BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 10872322)

  • 1. Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a common type.
    Huet J; Schnabel R; Sentenac A; Zillig W
    EMBO J; 1983; 2(8):1291-4. PubMed ID: 10872322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phylogenetic relations of DNA-dependent RNA polymerases of archaebacteria, eukaryotes, and eubacteria.
    Zillig W; Klenk HP; Palm P; Pühler G; Gropp F; Garrett RA; Leffers H
    Can J Microbiol; 1989 Jan; 35(1):73-80. PubMed ID: 2541879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of RNA polymerases and branching patterns of the three major groups of Archaebacteria.
    Iwabe N; Kuma K; Kishino H; Hasegawa M; Miyata T
    J Mol Evol; 1991 Jan; 32(1):70-8. PubMed ID: 1901370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-dependent RNA polymerase of thermoacidophilic archaebacteria.
    Prangishvilli D; Zillig W; Gierl A; Biesert L; Holz I
    Eur J Biochem; 1982 Mar; 122(3):471-7. PubMed ID: 6800790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome.
    Pühler G; Leffers H; Gropp F; Palm P; Klenk HP; Lottspeich F; Garrett RA; Zillig W
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4569-73. PubMed ID: 2499884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative evaluation of gene expression in archaebacteria.
    Zillig W; Palm P; Reiter WD; Gropp F; Pühler G; Klenk HP
    Eur J Biochem; 1988 May; 173(3):473-82. PubMed ID: 3131139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early evolution of eukaryotic DNA-dependent RNA polymerases.
    Kwapisz M; Beckouët F; Thuriaux P
    Trends Genet; 2008 May; 24(5):211-5. PubMed ID: 18384908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The origin and early evolution of nucleic acid polymerases.
    Lazcano A; Llaca V; Cappello R; Valverde V; Oró J
    Adv Space Res; 1992; 12(4):207-16. PubMed ID: 11538140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence comparison of glyceraldehyde-3-phosphate dehydrogenases from the three urkingdoms: evolutionary implication.
    Hensel R; Zwickl P; Fabry S; Lang J; Palm P
    Can J Microbiol; 1989 Jan; 35(1):81-5. PubMed ID: 2497945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on DNA polymerases and topoisomerases in archaebacteria.
    Forterre P; Elie C; Sioud M; Hamal A
    Can J Microbiol; 1989 Jan; 35(1):228-33. PubMed ID: 2541877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the beta and beta' subunits of Escherichia coli RNA polymerase.
    Severinov K; Mustaev A; Kukarin A; Muzzin O; Bass I; Darst SA; Goldfarb A
    J Biol Chem; 1996 Nov; 271(44):27969-74. PubMed ID: 8910400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA polymerase subunit homology among cyanobacteria, other eubacteria and archaebacteria.
    Schneider GJ; Hasekorn R
    J Bacteriol; 1988 Sep; 170(9):4136-40. PubMed ID: 3137214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors.
    Tahirov TH; Makarova KS; Rogozin IB; Pavlov YI; Koonin EV
    Biol Direct; 2009 Mar; 4():11. PubMed ID: 19296856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.
    Cavalier-Smith T
    Int J Syst Evol Microbiol; 2002 Jan; 52(Pt 1):7-76. PubMed ID: 11837318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relatedness of archaebacterial RNA polymerase core subunits to their eubacterial and eukaryotic equivalents.
    Berghöfer B; Kröckel L; Körtner C; Truss M; Schallenberg J; Klein A
    Nucleic Acids Res; 1988 Aug; 16(16):8113-28. PubMed ID: 2843811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Archaebacteria and the origin of the eukaryotic cytoplasm.
    Zillig W; Schnabel R; Stetter KO
    Curr Top Microbiol Immunol; 1985; 114():1-18. PubMed ID: 3922682
    [No Abstract]   [Full Text] [Related]  

  • 18. Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function.
    Cotton JA; McInerney JO
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17252-5. PubMed ID: 20852068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural homology between different archaebacterial DNA-dependent RNA polymerases analyzed by immunological comparison of their components.
    Schnabel R; Thomm M; Gerardy-Schahn R; Zillig W; Stetter KO; Huet J
    EMBO J; 1983; 2(5):751-5. PubMed ID: 16453454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases.
    Thomm M; Reich C; Grünberg S; Naji S
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):18-22. PubMed ID: 19143595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.