These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 10872450)

  • 21. Product-assisted catalysis in base-excision DNA repair.
    Fromme JC; Bruner SD; Yang W; Karplus M; Verdine GL
    Nat Struct Biol; 2003 Mar; 10(3):204-11. PubMed ID: 12592398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specific recognition of A/G and A/7,8-dihydro-8-oxoguanine (8-oxoG) mismatches by Escherichia coli MutY: removal of the C-terminal domain preferentially affects A/8-oxoG recognition.
    Gogos A; Cillo J; Clarke ND; Lu AL
    Biochemistry; 1996 Dec; 35(51):16665-71. PubMed ID: 8988002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG.
    Lau AY; Wyatt MD; Glassner BJ; Samson LD; Ellenberger T
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13573-8. PubMed ID: 11106395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Slow base excision by human alkyladenine DNA glycosylase limits the rate of formation of AP sites and AP endonuclease 1 does not stimulate base excision.
    Maher RL; Vallur AC; Feller JA; Bloom LB
    DNA Repair (Amst); 2007 Jan; 6(1):71-81. PubMed ID: 17018265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MutY DNA glycosylase: base release and intermediate complex formation.
    Zharkov DO; Grollman AP
    Biochemistry; 1998 Sep; 37(36):12384-94. PubMed ID: 9730810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Saccharomyces cerevisiae Ntg1p and Ntg2p: broad specificity N-glycosylases for the repair of oxidative DNA damage in the nucleus and mitochondria.
    You HJ; Swanson RL; Harrington C; Corbett AH; Jinks-Robertson S; Sentürker S; Wallace SS; Boiteux S; Dizdaroglu M; Doetsch PW
    Biochemistry; 1999 Aug; 38(35):11298-306. PubMed ID: 10471279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystallizing thoughts about DNA base excision repair.
    Hollis T; Lau A; Ellenberger T
    Prog Nucleic Acid Res Mol Biol; 2001; 68():305-14. PubMed ID: 11554308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The reaction mechanism of DNA glycosylase/AP lyases at abasic sites.
    McCullough AK; Sanchez A; Dodson ML; Marapaka P; Taylor JS; Lloyd RS
    Biochemistry; 2001 Jan; 40(2):561-8. PubMed ID: 11148051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural studies of human alkyladenine glycosylase and E. coli 3-methyladenine glycosylase.
    Hollis T; Lau A; Ellenberger T
    Mutat Res; 2000 Aug; 460(3-4):201-10. PubMed ID: 10946229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymatic mechanisms of DNA repair.
    Grossman L
    Natl Cancer Inst Monogr; 1981 Dec; (58):189-92. PubMed ID: 6281649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Action of multiple base excision repair enzymes on the 2'-deoxyribonolactone.
    Faure V; Saparbaev M; Dumy P; Constant JF
    Biochem Biophys Res Commun; 2005 Mar; 328(4):1188-95. PubMed ID: 15708002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA repair mechanisms for the recognition and removal of damaged DNA bases.
    Mol CD; Parikh SS; Putnam CD; Lo TP; Tainer JA
    Annu Rev Biophys Biomol Struct; 1999; 28():101-28. PubMed ID: 10410797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Excision repair of adozelesin-N3 adenine adduct by 3-methyladenine-DNA glycosylases and UvrABC nuclease.
    Jin SG; Choi JH; Ahn B; O'Connor TR; Mar W; Lee CS
    Mol Cells; 2001 Feb; 11(1):41-7. PubMed ID: 11266119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA.
    Phadnis N; Mehta R; Meednu N; Sia EA
    DNA Repair (Amst); 2006 Jul; 5(7):829-39. PubMed ID: 16730479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural bases for substrate recognition and repair system of base-excision DNA repair proteins.
    Fujii S; Yamagata Y
    Nucleic Acids Symp Ser; 2000; (44):57-8. PubMed ID: 12903266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOgg1: direct identification, ablation and chemical reconstitution.
    Nash HM; Lu R; Lane WS; Verdine GL
    Chem Biol; 1997 Sep; 4(9):693-702. PubMed ID: 9331411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uracil DNA glycosylase: insights from a master catalyst.
    Stivers JT; Drohat AC
    Arch Biochem Biophys; 2001 Dec; 396(1):1-9. PubMed ID: 11716455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate specificities and excision kinetics of DNA glycosylases involved in base-excision repair of oxidative DNA damage.
    Dizdaroglu M
    Mutat Res; 2003 Oct; 531(1-2):109-26. PubMed ID: 14637249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pathways of accumulation and repair of deoxyuridine residues in DNA of higher and lower organisms.
    Vasilenko NL; Nevinsky GA
    Biochemistry (Mosc); 2003 Feb; 68(2):135-51. PubMed ID: 12693959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of phylogenetically conserved acidic amino acid residues in catalysis by an oxidative DNA damage enzyme formamidopyrimidine glycosylase.
    Lavrukhin OV; Lloyd RS
    Biochemistry; 2000 Dec; 39(49):15266-71. PubMed ID: 11106507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.