These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 10872454)

  • 1. Tetrahydropterin-dependent amino acid hydroxylases.
    Fitzpatrick PF
    Annu Rev Biochem; 1999; 68():355-81. PubMed ID: 10872454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phylogeny of the aromatic amino acid hydroxylases revisited by characterizing phenylalanine hydroxylase from Dictyostelium discoideum.
    Siltberg-Liberles J; Steen IH; Svebak RM; Martinez A
    Gene; 2008 Dec; 427(1-2):86-92. PubMed ID: 18835579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into the regulation of aromatic amino acid hydroxylation.
    Fitzpatrick PF
    Curr Opin Struct Biol; 2015 Dec; 35():1-6. PubMed ID: 26241318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of dioxygen cleavage in tetrahydrobiopterin-dependent amino acid hydroxylases.
    Bassan A; Blomberg MR; Siegbahn PE
    Chemistry; 2003 Jan; 9(1):106-15. PubMed ID: 12506369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The aromatic amino acid hydroxylases.
    Fitzpatrick PF
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():235-94. PubMed ID: 10800597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of a peroxide shunt in the tetrahydropterin-dependent aromatic amino acid monooxygenases.
    Pavon JA; Fitzpatrick PF
    J Am Chem Soc; 2009 Apr; 131(13):4582-3. PubMed ID: 19281164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of chimeric pterin-dependent hydroxylases: contributions of the regulatory domains of tyrosine and phenylalanine hydroxylase to substrate specificity.
    Daubner SC; Hillas PJ; Fitzpatrick PF
    Biochemistry; 1997 Sep; 36(39):11574-82. PubMed ID: 9305947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of autoregulation of phenylalanine hydroxylase.
    Kobe B; Jennings IG; House CM; Michell BJ; Goodwill KE; Santarsiero BD; Stevens RC; Cotton RG; Kemp BE
    Nat Struct Biol; 1999 May; 6(5):442-8. PubMed ID: 10331871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic Mechanism and Intrinsic Rate Constants for the Reaction of a Bacterial Phenylalanine Hydroxylase.
    Subedi BP; Fitzpatrick PF
    Biochemistry; 2016 Dec; 55(49):6848-6857. PubMed ID: 27951651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and characterization of catalytic and regulatory domains of rat tyrosine hydroxylase.
    Daubner SC; Lohse DL; Fitzpatrick PF
    Protein Sci; 1993 Sep; 2(9):1452-60. PubMed ID: 8104613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of the iron-oxo hydroxylating species in the catalytic cycle of aromatic amino acid hydroxylases.
    Olsson E; Martinez A; Teigen K; Jensen VR
    Chemistry; 2011 Mar; 17(13):3746-58. PubMed ID: 21351297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion mutants of tyrosine hydroxylase identify a region critical for heparin binding.
    Daubner SC; Piper MM
    Protein Sci; 1995 Mar; 4(3):538-41. PubMed ID: 7795535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of "uncoupled" tetrahydropterin oxidation by phenylalanine hydroxylase.
    Dix TA; Benkovic SJ
    Biochemistry; 1985 Oct; 24(21):5839-46. PubMed ID: 4084494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural basis of the recognition of phenylalanine and pterin cofactors by phenylalanine hydroxylase: implications for the catalytic mechanism.
    Teigen K; Frøystein NA; Martínez A
    J Mol Biol; 1999 Dec; 294(3):807-23. PubMed ID: 10610798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric mechanisms in ACT domain containing enzymes involved in amino acid metabolism.
    Liberles JS; Thórólfsson M; Martínez A
    Amino Acids; 2005 Feb; 28(1):1-12. PubMed ID: 15662561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of tryptophan and tyrosine hydroxylase.
    Roberts KM; Fitzpatrick PF
    IUBMB Life; 2013 Apr; 65(4):350-7. PubMed ID: 23441081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of substrate orienting and phosphorylation sites within tryptophan hydroxylase using homology-based molecular modeling.
    Jiang GC; Yohrling GJ; Schmitt JD; Vrana KE
    J Mol Biol; 2000 Sep; 302(4):1005-17. PubMed ID: 10993738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of L-tryptophan 5-hydroxylation activity by structure-based modification of L-phenylalanine 4-hydroxylase from Chromobacterium violaceum.
    Kino K; Hara R; Nozawa A
    J Biosci Bioeng; 2009 Sep; 108(3):184-9. PubMed ID: 19664549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation to phenylalanine of tyrosine 371 in tyrosine hydroxylase increases the affinity for phenylalanine.
    Daubner SC; Fitzpatrick PF
    Biochemistry; 1998 Nov; 37(46):16440-4. PubMed ID: 9819237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenesis of a specificity-determining residue in tyrosine hydroxylase establishes that the enzyme is a robust phenylalanine hydroxylase but a fragile tyrosine hydroxylase.
    Daubner SC; Avila A; Bailey JO; Barrera D; Bermudez JY; Giles DH; Khan CA; Shaheen N; Thompson JW; Vasquez J; Oxley SP; Fitzpatrick PF
    Biochemistry; 2013 Feb; 52(8):1446-55. PubMed ID: 23368961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.