These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 10872454)

  • 21. Mutagenesis of a specificity-determining residue in tyrosine hydroxylase establishes that the enzyme is a robust phenylalanine hydroxylase but a fragile tyrosine hydroxylase.
    Daubner SC; Avila A; Bailey JO; Barrera D; Bermudez JY; Giles DH; Khan CA; Shaheen N; Thompson JW; Vasquez J; Oxley SP; Fitzpatrick PF
    Biochemistry; 2013 Feb; 52(8):1446-55. PubMed ID: 23368961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis.
    Koskiniemi H; Metsä-Ketelä M; Dobritzsch D; Kallio P; Korhonen H; Mäntsälä P; Schneider G; Niemi J
    J Mol Biol; 2007 Sep; 372(3):633-48. PubMed ID: 17669423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lysine241 of tyrosine hydroxylase is not required for binding of tetrahydrobiopterin substrate.
    Daubner SC; Fitzpatrick PF
    Arch Biochem Biophys; 1993 May; 302(2):455-60. PubMed ID: 8098196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A structural approach into human tryptophan hydroxylase and its implications for the regulation of serotonin biosynthesis.
    Martínez A; Knappskog PM; Haavik J
    Curr Med Chem; 2001 Jul; 8(9):1077-91. PubMed ID: 11472242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases.
    Olucha J; Lamb AL
    Bioorg Chem; 2011 Dec; 39(5-6):171-7. PubMed ID: 21871647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DIVERGENT RESPONSE TO INHIBITION BY PHENYLALANINE AND TRYPTOPHAN HYDROXYLATING SYSTEMS IN VITRO.
    GAL EM; CHATTERJEE SK; MARSHALL FD
    Biochim Biophys Acta; 1964 Jun; 85():495-8. PubMed ID: 14194866
    [No Abstract]   [Full Text] [Related]  

  • 27. Functional analysis of TMLH variants and definition of domains required for catalytic activity and mitochondrial targeting.
    Monfregola J; Cevenini A; Terracciano A; van Vlies N; Arbucci S; Wanders RJ; D'Urso M; Vaz FM; Ursini MV
    J Cell Physiol; 2005 Sep; 204(3):839-47. PubMed ID: 15754339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on the partially uncoupled oxidation of tetrahydropterins by phenylalanine hydroxylase.
    Davis MD; Kaufman S
    Neurochem Res; 1991 Jul; 16(7):813-9. PubMed ID: 1944771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A flexible loop in tyrosine hydroxylase controls coupling of amino acid hydroxylation to tetrahydropterin oxidation.
    Daubner SC; McGinnis JT; Gardner M; Kroboth SL; Morris AR; Fitzpatrick PF
    J Mol Biol; 2006 Jun; 359(2):299-307. PubMed ID: 16618490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recombinant human phenylalanine hydroxylase: novel regulatory and structural properties.
    Kowlessur D; Citron BA; Kaufman S
    Arch Biochem Biophys; 1996 Sep; 333(1):85-95. PubMed ID: 8806757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular cloning and analysis of the genes encoding the 4-hydroxyphenylacetate hydroxylase from Klebsiella pneumoniae.
    Gibello A; Suárez M; Allende JL; Martín M
    Arch Microbiol; 1997; 167(2-3):160-6. PubMed ID: 9133323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The catalytic mechanism of decarboxylative hydroxylation of salicylate hydroxylase revealed by crystal structure analysis at 2.5 Å resolution.
    Uemura T; Kita A; Watanabe Y; Adachi M; Kuroki R; Morimoto Y
    Biochem Biophys Res Commun; 2016 Jan; 469(2):158-63. PubMed ID: 26616054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redundant mechanisms regulating brain tyrosine and tryptophan hydroxylases.
    Mandell AJ
    Annu Rev Pharmacol Toxicol; 1978; 18():461-93. PubMed ID: 25611
    [No Abstract]   [Full Text] [Related]  

  • 35. The regulatory domain of human tryptophan hydroxylase 1 forms a stable dimer.
    Zhang S; Hinck CS; Fitzpatrick PF
    Biochem Biophys Res Commun; 2016 Aug; 476(4):457-461. PubMed ID: 27255998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selectivity and affinity determinants for ligand binding to the aromatic amino acid hydroxylases.
    Teigen K; McKinney JA; Haavik J; Martínez A
    Curr Med Chem; 2007; 14(4):455-67. PubMed ID: 17305546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for a high-spin Fe(IV) species in the catalytic cycle of a bacterial phenylalanine hydroxylase.
    Panay AJ; Lee M; Krebs C; Bollinger JM; Fitzpatrick PF
    Biochemistry; 2011 Mar; 50(11):1928-33. PubMed ID: 21261288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single turnover kinetics of tryptophan hydroxylase: evidence for a new intermediate in the reaction of the aromatic amino acid hydroxylases.
    Pavon JA; Eser B; Huynh MT; Fitzpatrick PF
    Biochemistry; 2010 Sep; 49(35):7563-71. PubMed ID: 20687613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The aromatic amino acid hydroxylases: Structures, catalysis, and regulation of phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase.
    Fitzpatrick PF
    Arch Biochem Biophys; 2023 Feb; 735():109518. PubMed ID: 36639008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delineation of the catalytic core of phenylalanine hydroxylase and identification of glutamate 286 as a critical residue for pterin function.
    Dickson PW; Jennings IG; Cotton RG
    J Biol Chem; 1994 Aug; 269(32):20369-75. PubMed ID: 7914195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.