These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10872458)

  • 21. Analysis of essential carboxylic amino acid residues for catalytic activity of fungal chitosanases by site-directed mutagenesis.
    Shimosaka M; Sato K; Nishiwaki N; Miyazawa T; Okazaki M
    J Biosci Bioeng; 2005 Nov; 100(5):545-50. PubMed ID: 16384794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Teaching old enzymes new tricks: engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis.
    Shaikh FA; Withers SG
    Biochem Cell Biol; 2008 Apr; 86(2):169-77. PubMed ID: 18443630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glycosidase mechanisms.
    Vasella A; Davies GJ; Böhm M
    Curr Opin Chem Biol; 2002 Oct; 6(5):619-29. PubMed ID: 12413546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and functional analyses of beta-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain representative of glycoside hydrolase 3.
    Pozzo T; Pasten JL; Karlsson EN; Logan DT
    J Mol Biol; 2010 Apr; 397(3):724-39. PubMed ID: 20138890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A β-(1,2)-glycosynthase and an attempted selection method for the directed evolution of glycosynthases.
    Jakeman DL; Sadeghi-Khomami A
    Biochemistry; 2011 Nov; 50(47):10359-66. PubMed ID: 22035228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unexpected regioselectivity of Humicola insolens Cel7B glycosynthase mutants.
    Blanchard S; Armand S; Couthino P; Patkar S; Vind J; Samain E; Driguez H; Cottaz S
    Carbohydr Res; 2007 Apr; 342(5):710-6. PubMed ID: 17224137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase.
    Gaiser OJ; Piotukh K; Ponnuswamy MN; Planas A; Borriss R; Heinemann U
    J Mol Biol; 2006 Apr; 357(4):1211-25. PubMed ID: 16483609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oligosaccharide binding in family 8 glycosidases: crystal structures of active-site mutants of the beta-1,4-xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in complex with substrate and product.
    De Vos D; Collins T; Nerinckx W; Savvides SN; Claeyssens M; Gerday C; Feller G; Van Beeumen J
    Biochemistry; 2006 Apr; 45(15):4797-807. PubMed ID: 16605248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanistic studies on N-acetylmuramic acid 6-phosphate hydrolase (MurQ): an etherase involved in peptidoglycan recycling.
    Hadi T; Dahl U; Mayer C; Tanner ME
    Biochemistry; 2008 Nov; 47(44):11547-58. PubMed ID: 18837509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of changes in three catalytic residues on the relative stabilities of some of the intermediates and transition states in the citrate synthase reaction.
    Kurz LC; Nakra T; Stein R; Plungkhen W; Riley M; Hsu F; Drysdale GR
    Biochemistry; 1998 Jul; 37(27):9724-37. PubMed ID: 9657685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies.
    Paramesvaran J; Hibbert EG; Russell AJ; Dalby PA
    Protein Eng Des Sel; 2009 Jul; 22(7):401-11. PubMed ID: 19502357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase.
    Wakarchuk WW; Campbell RL; Sung WL; Davoodi J; Yaguchi M
    Protein Sci; 1994 Mar; 3(3):467-75. PubMed ID: 8019418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi.
    MacLeod AM; Tull D; Rupitz K; Warren RA; Withers SG
    Biochemistry; 1996 Oct; 35(40):13165-72. PubMed ID: 8855954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A direct continuous spectrophotometric assay for glycosidases with 3-nitro-2-pyridyl glycosides by tautomerization of 2-hydroxy-3-nitropyridine.
    Ma SJ; Hiratake J; Nakai Y; Izumi M; Fukase K; Kusumoto S; Sakata K
    Anal Biochem; 2002 Mar; 302(2):291-7. PubMed ID: 11878810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of hydrolysis and transglycosylation activity of Thermus maltogenic amylase by combinatorial saturation mutagenesis.
    Oh SW; Jang MU; Jeong CK; Kang HJ; Park JM; Kim TJ
    J Microbiol Biotechnol; 2008 Aug; 18(8):1401-7. PubMed ID: 18756100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: the role of alanine 230 in acceptor subsite +1.
    Leemhuis H; Rozeboom HJ; Wilbrink M; Euverink GJ; Dijkstra BW; Dijkhuizen L
    Biochemistry; 2003 Jun; 42(24):7518-26. PubMed ID: 12809508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro synthesis of artificial polysaccharides by glycosidases and glycosynthases.
    Faijes M; Planas A
    Carbohydr Res; 2007 Sep; 342(12-13):1581-94. PubMed ID: 17606254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a colourimetric assay for glycosynthases.
    Hayes MR; Bochinsky KA; Seibt LS; Elling L; Pietruszka J
    J Biotechnol; 2017 Sep; 257():162-170. PubMed ID: 28193496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advanced glycosidases as ingenious biosynthetic instruments.
    Mészáros Z; Nekvasilová P; Bojarová P; Křen V; Slámová K
    Biotechnol Adv; 2021; 49():107733. PubMed ID: 33781890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering of glycosidases and glycosyltransferases.
    Hancock SM; Vaughan MD; Withers SG
    Curr Opin Chem Biol; 2006 Oct; 10(5):509-19. PubMed ID: 16905354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.