BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10872817)

  • 1. Skeletal muscle regeneration is not impaired in Fgf6 -/- mutant mice.
    Fiore F; Sébille A; Birnbaum D
    Biochem Biophys Res Commun; 2000 May; 272(1):138-43. PubMed ID: 10872817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FGF6 regulates muscle differentiation through a calcineurin-dependent pathway in regenerating soleus of adult mice.
    Armand AS; Pariset C; Laziz I; Launay T; Fiore F; Della Gaspera B; Birnbaum D; Charbonnier F; Chanoine C
    J Cell Physiol; 2005 Jul; 204(1):297-308. PubMed ID: 15672378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IGF-II is up-regulated and myofibres are hypertrophied in regenerating soleus of mice lacking FGF6.
    Armand AS; Lécolle S; Launay T; Pariset C; Fiore F; Della Gaspera B; Birnbaum D; Chanoine C; Charbonnier F
    Exp Cell Res; 2004 Jul; 297(1):27-38. PubMed ID: 15194422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sprouty gene expression is regulated by nerve and FGF6 during regeneration of mouse muscles.
    Laziz I; Armand AS; Pariset C; Lecolle S; Della Gaspera B; Charbonnier F; Chanoine C
    Growth Factors; 2007 Jun; 25(3):151-9. PubMed ID: 18049951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apparent normal phenotype of Fgf6-/- mice.
    Fiore F; Planche J; Gibier P; Sebille A; deLapeyrière O; Birnbaum D
    Int J Dev Biol; 1997 Aug; 41(4):639-42. PubMed ID: 9303352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced mobility of fibroblast growth factor (FGF)-deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple-mutant mice.
    Neuhaus P; Oustanina S; Loch T; Krüger M; Bober E; Dono R; Zeller R; Braun T
    Mol Cell Biol; 2003 Sep; 23(17):6037-48. PubMed ID: 12917328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injection of FGF6 accelerates regeneration of the soleus muscle in adult mice.
    Armand AS; Launay T; Pariset C; Della Gaspera B; Charbonnier F; Chanoine C
    Biochim Biophys Acta; 2003 Sep; 1642(1-2):97-105. PubMed ID: 12972298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice.
    McCroskery S; Thomas M; Platt L; Hennebry A; Nishimura T; McLeay L; Sharma M; Kambadur R
    J Cell Sci; 2005 Aug; 118(Pt 15):3531-41. PubMed ID: 16079293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FGF6 modulates the expression of fibroblast growth factor receptors and myogenic genes in muscle cells.
    Pizette S; Coulier F; Birnbaum D; DeLapeyrière O
    Exp Cell Res; 1996 Apr; 224(1):143-51. PubMed ID: 8612679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for FGF-6 in skeletal muscle regeneration.
    Floss T; Arnold HH; Braun T
    Genes Dev; 1997 Aug; 11(16):2040-51. PubMed ID: 9284044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors inducing mast cell accumulation in skeletal muscle.
    Lefaucheur JP; Gjata B; Sebille A
    Neuropathol Appl Neurobiol; 1996 Jun; 22(3):248-55. PubMed ID: 8804027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic exercise accelerates the degeneration-regeneration cycle and downregulates insulin-like growth factor-1 in muscle of mdx mice.
    Okano T; Yoshida K; Nakamura A; Sasazawa F; Oide T; Takeda S; Ikeda S
    Muscle Nerve; 2005 Aug; 32(2):191-9. PubMed ID: 15937872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New role for serum response factor in postnatal skeletal muscle growth and regeneration via the interleukin 4 and insulin-like growth factor 1 pathways.
    Charvet C; Houbron C; Parlakian A; Giordani J; Lahoute C; Bertrand A; Sotiropoulos A; Renou L; Schmitt A; Melki J; Li Z; Daegelen D; Tuil D
    Mol Cell Biol; 2006 Sep; 26(17):6664-74. PubMed ID: 16914747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FGF6 in myogenesis.
    Armand AS; Laziz I; Chanoine C
    Biochim Biophys Acta; 2006 Aug; 1763(8):773-8. PubMed ID: 16875743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased expression of deltaCaMKII isoforms in skeletal muscle regeneration: Implications in dystrophic muscle disease.
    Abraham ST; Shaw C
    J Cell Biochem; 2006 Feb; 97(3):621-32. PubMed ID: 16215994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.
    Pavlath GK; Thaloor D; Rando TA; Cheong M; English AW; Zheng B
    Dev Dyn; 1998 Aug; 212(4):495-508. PubMed ID: 9707323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a fibroblast growth factor 6 (FGF6) gene in a non-mammalian vertebrate: continuous expression of FGF6 accompanies muscle fiber hyperplasia.
    Rescan PY
    Biochim Biophys Acta; 1998 Dec; 1443(3):305-14. PubMed ID: 9878802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomics on mammalian Fgf6-Fgf23 locus.
    Katoh Y; Katoh M
    Int J Mol Med; 2005 Aug; 16(2):355-8. PubMed ID: 16012775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The calcineurin signal transduction pathway is essential for successful muscle regeneration in mdx dystrophic mice.
    Stupka N; Gregorevic P; Plant DR; Lynch GS
    Acta Neuropathol; 2004 Apr; 107(4):299-310. PubMed ID: 14727129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential adaptation of growth and differentiation factor 8/myostatin, fibroblast growth factor 6 and leukemia inhibitory factor in overloaded, regenerating and denervated rat muscles.
    Sakuma K; Watanabe K; Sano M; Uramoto I; Totsuka T
    Biochim Biophys Acta; 2000 Jun; 1497(1):77-88. PubMed ID: 10838161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.