BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 10873454)

  • 1. A revised mechanism for the alkaline phosphatase reaction involving three metal ions.
    Stec B; Holtz KM; Kantrowitz ER
    J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase.
    Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC
    J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase.
    Wang J; Stieglitz KA; Kantrowitz ER
    Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102.
    Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER
    J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases.
    Murphy JE; Tibbitts TT; Kantrowitz ER
    J Mol Biol; 1995 Nov; 253(4):604-17. PubMed ID: 7473737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites.
    Horton NC; Perona JJ
    Biochemistry; 2004 Jun; 43(22):6841-57. PubMed ID: 15170321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and mechanism of alkaline phosphatase.
    Coleman JE
    Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites.
    Ma L; Kantrowitz ER
    Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: implications for the catalytic mechanism.
    Beernink PT; Segelke BW; Hadi MZ; Erzberger JP; Wilson DM; Rupp B
    J Mol Biol; 2001 Apr; 307(4):1023-34. PubMed ID: 11286553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase.
    Tibbitts TT; Murphy JE; Kantrowitz ER
    J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-ion induced conformational changes in alkaline phosphatase from E. coli assessed by limited proteolysis.
    Bucević-Popović V; Pavela-Vrancic M; Dieckmann R
    Biochimie; 2004 Jun; 86(6):403-9. PubMed ID: 15358057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-binding and metal-exchange crystallographic studies on shrimp alkaline phosphatase.
    de Backer MM; McSweeney S; Lindley PF; Hough E
    Acta Crystallogr D Biol Crystallogr; 2004 Sep; 60(Pt 9):1555-61. PubMed ID: 15333925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of replacing active site residues in a cold-active alkaline phosphatase with those found in its mesophilic counterpart from Escherichia coli.
    Gudjónsdóttir K; Asgeirsson B
    FEBS J; 2008 Jan; 275(1):117-27. PubMed ID: 18067583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid.
    Sullivan SM; Holyoak T
    Biochemistry; 2007 Sep; 46(35):10078-88. PubMed ID: 17685635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of Bacillus alkaline phytase in complex with divalent metal ions and inositol hexasulfate.
    Zeng YF; Ko TP; Lai HL; Cheng YS; Wu TH; Ma Y; Chen CC; Yang CS; Cheng KJ; Huang CH; Guo RT; Liu JR
    J Mol Biol; 2011 Jun; 409(2):214-24. PubMed ID: 21463636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic roles of divalent metal ions in phosphoryl transfer by EcoRV endonuclease.
    Sam MD; Perona JJ
    Biochemistry; 1999 May; 38(20):6576-86. PubMed ID: 10350476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The R78K and D117E active-site variants of Saccharomyces cerevisiae soluble inorganic pyrophosphatase: structural studies and mechanistic implications.
    Tuominen V; Heikinheimo P; Kajander T; Torkkel T; Hyytiä T; Käpylä J; Lahti R; Cooperman BS; Goldman A
    J Mol Biol; 1998 Dec; 284(5):1565-80. PubMed ID: 9878371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ; Murphy JE; Kantrowitz ER
    J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic identification of metal-binding sites in Escherichia coli inorganic pyrophosphatase.
    Kankare J; Salminen T; Lahti R; Cooperman BS; Baykov AA; Goldman A
    Biochemistry; 1996 Apr; 35(15):4670-7. PubMed ID: 8664256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pH-dependent activation mechanism of Ser102 in Escherichia coli alkaline phosphatase: a theoretical study.
    Zhang H; Yang L; Ding W; Ma Y
    J Biol Inorg Chem; 2018 Mar; 23(2):277-284. PubMed ID: 29290009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.