BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 10873454)

  • 21. Crystal structures of penicillin acylase enzyme-substrate complexes: structural insights into the catalytic mechanism.
    McVey CE; Walsh MA; Dodson GG; Wilson KS; Brannigan JA
    J Mol Biol; 2001 Oct; 313(1):139-50. PubMed ID: 11601852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The homing endonuclease I-CreI uses three metals, one of which is shared between the two active sites.
    Chevalier BS; Monnat RJ; Stoddard BL
    Nat Struct Biol; 2001 Apr; 8(4):312-6. PubMed ID: 11276249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structures of human IPP isomerase: new insights into the catalytic mechanism.
    Zhang C; Liu L; Xu H; Wei Z; Wang Y; Lin Y; Gong W
    J Mol Biol; 2007 Mar; 366(5):1437-46. PubMed ID: 17137593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5.
    Wang E; Koutsioulis D; Leiros HK; Andersen OA; Bouriotis V; Hough E; Heikinheimo P
    J Mol Biol; 2007 Mar; 366(4):1318-31. PubMed ID: 17198711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli.
    Brautigam CA; Sun S; Piccirilli JA; Steitz TA
    Biochemistry; 1999 Jan; 38(2):696-704. PubMed ID: 9888810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Substrate and metal complexes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Saccharomyces cerevisiae provide new insights into the catalytic mechanism.
    König V; Pfeil A; Braus GH; Schneider TR
    J Mol Biol; 2004 Mar; 337(3):675-90. PubMed ID: 15019786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The crystal structures of phosphopantetheine adenylyltransferase with bound substrates reveal the enzyme's catalytic mechanism.
    Izard T
    J Mol Biol; 2002 Jan; 315(4):487-95. PubMed ID: 11812124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Open and closed conformation of the E. coli purine nucleoside phosphorylase active center and implications for the catalytic mechanism.
    Koellner G; Bzowska A; Wielgus-Kutrowska B; Luić M; Steiner T; Saenger W; Stepiński J
    J Mol Biol; 2002 Jan; 315(3):351-71. PubMed ID: 11786017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies.
    Zha M; Guo Q; Zhang Y; Yu B; Ou Y; Zhong C; Ding J
    J Mol Biol; 2008 Jun; 379(3):568-78. PubMed ID: 18462755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical modeling of the reaction mechanism of phosphate monoester hydrolysis in alkaline phosphatase.
    López-Canut V; Martí S; Bertrán J; Moliner V; Tuñón I
    J Phys Chem B; 2009 Jun; 113(22):7816-24. PubMed ID: 19425583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of the isoaspartyl peptidase with L-asparaginase activity from Escherichia coli.
    Prahl A; Pazgier M; Hejazi M; Lockau W; Lubkowski J
    Acta Crystallogr D Biol Crystallogr; 2004 Jun; 60(Pt 6):1173-6. PubMed ID: 15159592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-binding sites at the active site of restriction endonuclease BamHI can conform to a one-ion mechanism.
    Mones L; Simon I; Fuxreiter M
    Biol Chem; 2007 Jan; 388(1):73-8. PubMed ID: 17214552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissection of the nucleotide and metal-phosphate binding sites in cAMP-dependent protein kinase.
    Herberg FW; Doyle ML; Cox S; Taylor SS
    Biochemistry; 1999 May; 38(19):6352-60. PubMed ID: 10320366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis.
    Lukatela G; Krauss N; Theis K; Selmer T; Gieselmann V; von Figura K; Saenger W
    Biochemistry; 1998 Mar; 37(11):3654-64. PubMed ID: 9521684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A combined experimental and theoretical study of divalent metal ion selectivity and function in proteins: application to E. coli ribonuclease H1.
    Babu CS; Dudev T; Casareno R; Cowan JA; Lim C
    J Am Chem Soc; 2003 Aug; 125(31):9318-28. PubMed ID: 12889961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alkaline phosphatase catalysis is ultrasensitive to charge sequestered between the active site zinc ions.
    Nikolic-Hughes I; O'brien PJ; Herschlag D
    J Am Chem Soc; 2005 Jul; 127(26):9314-5. PubMed ID: 15984827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structures of Escherichia coli inorganic pyrophosphatase complexed with Ca(2+) or CaPP(i) at atomic resolution and their mechanistic implications.
    Samygina VR; Popov AN; Rodina EV; Vorobyeva NN; Lamzin VS; Polyakov KM; Kurilova SA; Nazarova TI; Avaeva SM
    J Mol Biol; 2001 Nov; 314(3):633-45. PubMed ID: 11846572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The crystal structure of human isopentenyl diphosphate isomerase at 1.7 A resolution reveals its catalytic mechanism in isoprenoid biosynthesis.
    Zheng W; Sun F; Bartlam M; Li X; Li R; Rao Z
    J Mol Biol; 2007 Mar; 366(5):1447-58. PubMed ID: 17250851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of the Mycobacterium tuberculosis dUTPase: insights into the catalytic mechanism.
    Chan S; Segelke B; Lekin T; Krupka H; Cho US; Kim MY; So M; Kim CY; Naranjo CM; Rogers YC; Park MS; Waldo GS; Pashkov I; Cascio D; Perry JL; Sawaya MR
    J Mol Biol; 2004 Aug; 341(2):503-17. PubMed ID: 15276840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Escherichia coli type I isopentenyl diphosphate isomerase: structural and catalytic roles for divalent metals.
    Lee S; Poulter CD
    J Am Chem Soc; 2006 Sep; 128(35):11545-50. PubMed ID: 16939278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.