These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 10873461)

  • 1. Use of intrinsic binding energy for catalysis by a cofactor-independent DNA enzyme.
    Geyer CR; Sen D
    J Mol Biol; 2000 Jun; 299(5):1387-98. PubMed ID: 10873461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metallation of the transition-state inhibitor N-methyl mesoporphyrin by ferrochelatase: implications for the catalytic reaction mechanism.
    Shipovskov S; Karlberg T; Fodje M; Hansson MD; Ferreira GC; Hansson M; Reimann CT; Al-Karadaghi S
    J Mol Biol; 2005 Oct; 352(5):1081-90. PubMed ID: 16140324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward an efficient DNAzyme.
    Li Y; Sen D
    Biochemistry; 1997 May; 36(18):5589-99. PubMed ID: 9154943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and utility of an RNA-cleaving DNA enzyme.
    Santoro SW; Joyce GF
    Biochemistry; 1998 Sep; 37(38):13330-42. PubMed ID: 9748341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme.
    Geyer CR; Sen D
    Chem Biol; 1997 Aug; 4(8):579-93. PubMed ID: 9281526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and thermodynamic characterization of the RNA-cleaving 8-17 deoxyribozyme.
    Bonaccio M; Credali A; Peracchi A
    Nucleic Acids Res; 2004; 32(3):916-25. PubMed ID: 14963261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes.
    Wang DY; Lai BH; Sen D
    J Mol Biol; 2002 Apr; 318(1):33-43. PubMed ID: 12054766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lanthanide probes for a phosphodiester-cleaving, lead-dependent, DNAzyme.
    Geyer CR; Sen D
    J Mol Biol; 1998 Jan; 275(3):483-9. PubMed ID: 9466925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and mechanistic basis of porphyrin metallation by ferrochelatase.
    Lecerof D; Fodje M; Hansson A; Hansson M; Al-Karadaghi S
    J Mol Biol; 2000 Mar; 297(1):221-32. PubMed ID: 10704318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The modus operandi of a DNA enzyme: enhancement of substrate basicity.
    Li Y; Sen D
    Chem Biol; 1998 Jan; 5(1):1-12. PubMed ID: 9479475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M; Ito N; Tsumuraya T; Suzuki K; Sakakura M; Fujii I
    J Mol Biol; 2007 May; 369(1):198-209. PubMed ID: 17428500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: implications for the catalytic mechanism.
    Beernink PT; Segelke BW; Hadi MZ; Erzberger JP; Wilson DM; Rupp B
    J Mol Biol; 2001 Apr; 307(4):1023-34. PubMed ID: 11286553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The homing endonuclease I-CreI uses three metals, one of which is shared between the two active sites.
    Chevalier BS; Monnat RJ; Stoddard BL
    Nat Struct Biol; 2001 Apr; 8(4):312-6. PubMed ID: 11276249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding.
    Grabarse W; Mahlert F; Duin EC; Goubeaud M; Shima S; Thauer RK; Lamzin V; Ermler U
    J Mol Biol; 2001 May; 309(1):315-30. PubMed ID: 11491299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of a strictly conserved active site tyrosine in cofactor genesis in the copper amine oxidase from Hansenula polymorpha.
    DuBois JL; Klinman JP
    Biochemistry; 2006 Mar; 45(10):3178-88. PubMed ID: 16519513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder.
    van Oijen AM; Blainey PC; Crampton DJ; Richardson CC; Ellenberger T; Xie XS
    Science; 2003 Aug; 301(5637):1235-8. PubMed ID: 12947199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative modes of substrate distortion in enzyme and antibody catalyzed ferrochelation reactions.
    Blackwood ME; Rush TS; Romesberg F; Schultz PG; Spiro TG
    Biochemistry; 1998 Jan; 37(3):779-82. PubMed ID: 9457047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human AP endonuclease (APE1) demonstrates endonucleolytic activity against AP sites in single-stranded DNA.
    Marenstein DR; Wilson DM; Teebor GW
    DNA Repair (Amst); 2004 May; 3(5):527-33. PubMed ID: 15084314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibody-catalyzed porphyrin metallation.
    Cochran AG; Schultz PG
    Science; 1990 Aug; 249(4970):781-3. PubMed ID: 2389144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of a RNA-cleaving DNA catalyst obtained via in vitro selection.
    Carrigan MA; Ricardo A; Ang DN; Benner SA
    Biochemistry; 2004 Sep; 43(36):11446-59. PubMed ID: 15350131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.