These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 10873674)
1. Involvement of nitric oxide in endothelium-dependent arterial relaxation by leptin. Kimura K; Tsuda K; Baba A; Kawabe T; Boh-oka S; Ibata M; Moriwaki C; Hano T; Nishio I Biochem Biophys Res Commun; 2000 Jul; 273(2):745-9. PubMed ID: 10873674 [TBL] [Abstract][Full Text] [Related]
2. Endothelium dependence and gestational regulation of inhibition of vascular tone by magnesium sulfate in rat aorta. Longo M; Jain V; Vedernikov YP; Facchinetti F; Saade GR; Garfield RE Am J Obstet Gynecol; 2001 Apr; 184(5):971-8. PubMed ID: 11303207 [TBL] [Abstract][Full Text] [Related]
3. Effect of training frequency on endothelium-dependent vasorelaxation in rats. Heylen E; Guerrero F; Mansourati J; Theron M; Thioub S; Saïag B Eur J Cardiovasc Prev Rehabil; 2008 Feb; 15(1):52-8. PubMed ID: 18277186 [TBL] [Abstract][Full Text] [Related]
4. The mechanisms of vasorelaxant effect of leptin on isolated rabbit aorta. Sahin AS; Bariskaner H Fundam Clin Pharmacol; 2007 Dec; 21(6):595-600. PubMed ID: 18034660 [TBL] [Abstract][Full Text] [Related]
5. Clonidine induces rat aorta relaxation by nitric oxide-dependent and -independent mechanisms. Molin JC; Bendhack LM Vascul Pharmacol; 2004 Aug; 42(1):1-6. PubMed ID: 15664881 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms underlying endothelium-dependent, nitric oxide- and prostanoid-independent relaxation in monkey and dog coronary arteries. Fujioka H; Ayajiki K; Shinozaki K; Toda N; Okamura T Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):488-95. PubMed ID: 12382080 [TBL] [Abstract][Full Text] [Related]
7. Effects of L-norgestrel on the endothelium-dependent relaxation response of rabbit clitoral cavernous smooth muscles. Myung SC; Kim SC; Lee SY; Han JY; Lee MY Fertil Steril; 2006 Oct; 86(4 Suppl):1170-4. PubMed ID: 16963033 [TBL] [Abstract][Full Text] [Related]
8. Role of nitric oxide and carbon monoxide in N(omega)-Nitro-L-arginine methyl ester-resistant acetylcholine-induced relaxation in chicken carotid artery. Leo MD; Siddegowda YK; Kumar D; Tandan SK; Sastry KV; Prakash VR; Mishra SK Eur J Pharmacol; 2008 Oct; 596(1-3):111-7. PubMed ID: 18713623 [TBL] [Abstract][Full Text] [Related]
9. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats. Shi Y; Ku DD; Man RY; Vanhoutte PM J Pharmacol Exp Ther; 2006 Jul; 318(1):276-81. PubMed ID: 16565165 [TBL] [Abstract][Full Text] [Related]
10. Endothelial mediators of the acetylcholine-induced relaxation of the rat femoral artery. Leung HS; Leung FP; Yao X; Ko WH; Chen ZY; Vanhoutte PM; Huang Y Vascul Pharmacol; 2006 May; 44(5):299-308. PubMed ID: 16527547 [TBL] [Abstract][Full Text] [Related]
11. Endothelium-dependent and direct relaxation induced by ethyl acetate extract from Flos Chrysanthemi in rat thoracic aorta. Jiang HD; Cai J; Xu JH; Zhou XM; Xia Q J Ethnopharmacol; 2005 Oct; 101(1-3):221-6. PubMed ID: 15950416 [TBL] [Abstract][Full Text] [Related]
12. High-concentration tramadol-induced vasodilation in rabbit aorta is mediated by both endothelium-dependent and -independent mechanisms. Kaya T; Gursoy S; Karadas B; Sarac B; Fafali H; Soydan AS Acta Pharmacol Sin; 2003 May; 24(5):385-9. PubMed ID: 12740170 [TBL] [Abstract][Full Text] [Related]
13. Vasodilator effects of leptin on canine isolated mesenteric arteries and veins. Mohammed MM; Myers DS; Sofola OA; Hainsworth R; Drinkhill MJ Clin Exp Pharmacol Physiol; 2007 Aug; 34(8):771-4. PubMed ID: 17600555 [TBL] [Abstract][Full Text] [Related]
14. Neither K+ channels nor PI3K/Akt mediates the vasodilative effect of nebivolol on different types of rat arteries. Wang Y; Zhang M; Liu Y; Li J; Song E; Niu L; Cheng N J Cardiovasc Pharmacol Ther; 2009 Dec; 14(4):332-8. PubMed ID: 19903983 [TBL] [Abstract][Full Text] [Related]
15. Dietary n-3 polyunsaturated fatty acids and endothelium dysfunction induced by lysophosphatidylcholine in Syrian hamster aorta. Lucas A; Grynberg A; Lacour B; Goirand F Metabolism; 2008 Feb; 57(2):233-40. PubMed ID: 18191054 [TBL] [Abstract][Full Text] [Related]
16. Differences in vasodilatory response to red wine in rat and guinea pig aorta. Brizic I; Modun D; Vukovic J; Budimir D; Katalinic V; Boban M J Cardiovasc Pharmacol; 2009 Feb; 53(2):116-20. PubMed ID: 19188838 [TBL] [Abstract][Full Text] [Related]
17. Macrophage-induced nitric oxide and prostanoid dependent relaxation of arterial smooth muscles. Wang H; Mizuno R; Ohhashi T Can J Physiol Pharmacol; 1997 Jul; 75(7):789-95. PubMed ID: 9315345 [TBL] [Abstract][Full Text] [Related]
18. Vasomotor responses of canine coronary arterial rings to NG-monomethyl-L-arginine and N omega nitro L-arginine methyl ester. Winn MJ; Asante NK; Ku DD J Pharmacol Exp Ther; 1993 Jan; 264(1):265-70. PubMed ID: 8423529 [TBL] [Abstract][Full Text] [Related]
19. Apamin/charybdotoxin-sensitive endothelial K+ channels contribute to acetylcholine-induced, NO-dependent vasorelaxation of rat aorta. Qiu Y; Quilley J Med Sci Monit; 2001; 7(6):1129-36. PubMed ID: 11687720 [TBL] [Abstract][Full Text] [Related]
20. Impairment of smooth muscle function of rat thoracic aorta in an endothelium-independent manner by long-term administration of N(G)-nitro-L-arginine methyl ester. López RM; Ortíz CS; Ruíz A; Vélez JM; Castillo C; Castillo EF Fundam Clin Pharmacol; 2004 Dec; 18(6):669-77. PubMed ID: 15548238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]