These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10873748)

  • 1. Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells.
    Summerfield A; Knoetig SM; Tschudin R; McCullough KC
    Virology; 2000 Jun; 272(1):50-60. PubMed ID: 10873748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of apoptosis in bone marrow neutrophil-lineage cells by classical swine fever virus.
    Summerfield A; Zingle K; Inumaru S; McCullough KC
    J Gen Virol; 2001 Jun; 82(Pt 6):1309-1318. PubMed ID: 11369874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classical swine fever virus induces tumor necrosis factor-alpha and lymphocyte apoptosis.
    Choi C; Hwang KK; Chae C
    Arch Virol; 2004 May; 149(5):875-89. PubMed ID: 15098104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathogenicity and kinetics of virus propagation in swine infected with the cytopathogenic classical swine fever virus containing defective interfering particles.
    Aoki H; Ishikawa K; Sekiguchi H; Suzuki S; Fukusho A
    Arch Virol; 2003 Feb; 148(2):297-310. PubMed ID: 12556994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical Swine Fever: pathology of bone marrow.
    Gomez-Villamandos JC; Salguero FJ; Ruiz-Villamor E; Sánchez-Cordón PJ; Bautista MJ; Sierra MA
    Vet Pathol; 2003 Mar; 40(2):157-63. PubMed ID: 12637755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine.
    Risatti GR; Holinka LG; Lu Z; Kutish GF; Tulman ER; French RA; Sur JH; Rock DL; Borca MV
    Virology; 2005 Dec; 343(1):116-27. PubMed ID: 16168455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A histopathologic, immunohistochemical, and ultrastructural study of the intestine in pigs inoculated with classical swine fever virus.
    Sánchez-Cordón PJ; Romanini S; Salguero FJ; Ruiz-Villamor E; Carrasco L; Gómez-Villamandos JC
    Vet Pathol; 2003 May; 40(3):254-62. PubMed ID: 12724565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuropathologic study of experimental classical swine fever.
    Gómez-Villamandos JC; García de Leániz I; Núñez A; Salguero FJ; Ruiz-Villamor E; Romero-Trevejo JL; Sánchez-Cordón PJ
    Vet Pathol; 2006 Jul; 43(4):530-40. PubMed ID: 16846995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and immunohistochemical changes in splenic macrophages of pigs infected with classical swine fever.
    Gómez-Villamandos JC; Ruiz-Villamor E; Bautista MJ; Sánchez CP; Sánchez-Cordón PJ; Salguero FJ; Jover A
    J Comp Pathol; 2001; 125(2-3):98-109. PubMed ID: 11578124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental chemical-induced bone marrow B cell apoptosis: death receptor-independent activation of a caspase-3 to caspase-8 pathway.
    Ryu HY; Emberley JK; Schlezinger JJ; Allan LL; Na S; Sherr DH
    Mol Pharmacol; 2005 Oct; 68(4):1087-96. PubMed ID: 16014577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of classical swine fever vaccine virus in blood and tissue samples of pigs vaccinated either with a conventional C-strain vaccine or a modified live marker vaccine.
    Koenig P; Hoffmann B; Depner KR; Reimann I; Teifke JP; Beer M
    Vet Microbiol; 2007 Mar; 120(3-4):343-51. PubMed ID: 17147979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antitumor effects of celecoxib on K562 leukemia cells are mediated by cell-cycle arrest, caspase-3 activation, and downregulation of Cox-2 expression and are synergistic with hydroxyurea or imatinib.
    Zhang GS; Liu DS; Dai CW; Li RJ
    Am J Hematol; 2006 Apr; 81(4):242-55. PubMed ID: 16550520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classical swine fever virus induces activation of plasmacytoid and conventional dendritic cells in tonsil, blood, and spleen of infected pigs.
    Jamin A; Gorin S; Cariolet R; Le Potier MF; Kuntz-Simon G
    Vet Res; 2008; 39(1):7. PubMed ID: 18073094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro.
    La Rocca SA; Herbert RJ; Crooke H; Drew TW; Wileman TE; Powell PP
    J Virol; 2005 Jun; 79(11):7239-47. PubMed ID: 15890962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caspase-3-like activity determines the type of cell death following ionizing radiation in MOLT-4 human leukaemia cells.
    Coelho D; Holl V; Weltin D; Lacornerie T; Magnenet P; Dufour P; Bischoff P
    Br J Cancer; 2000 Sep; 83(5):642-9. PubMed ID: 10944606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. African swine fever and classical swine fever: a review of the pathogenesis.
    Gómez-Villamandos JC; Carrasco L; Bautista MJ; Sierra MA; Quezada M; Hervas J; Chacón Mde L; Ruiz-Villamor E; Salguero FJ; Sónchez-Cordón PJ; Romanini S; Núñez A; Mekonen T; Méndez A; Jover A
    Dtsch Tierarztl Wochenschr; 2003 Apr; 110(4):165-9. PubMed ID: 12756959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of B cells in the immune response to pestivirus (classical Swine Fever virus).
    Sánchez-Cordón PJ; Romero-Trevejo JL; Pedrera M; Raya AI; Gómez-Villamandos JC
    J Comp Pathol; 2006 Jul; 135(1):32-41. PubMed ID: 16844443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of Classical swine fever virus.
    Zhao JJ; Cheng D; Li N; Sun Y; Shi Z; Zhu QH; Tu C; Tong GZ; Qiu HJ
    Vet Microbiol; 2008 Jan; 126(1-3):1-10. PubMed ID: 17658704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classical swine fever: pathogenesis of glomerular damage and immunocharacterization of immunocomplex deposits.
    Ruiz-Villamor E; Quezada M; Bautista MJ; Romanini S; Carrasco L; Salguero FJ; Gómez-Villamandos JC
    J Comp Pathol; 2001 May; 124(4):246-54. PubMed ID: 11437500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A statistical pattern recognition approach for determining cellular viability and lineage phenotype in cultured cells and murine bone marrow.
    Quinn J; Fisher PW; Capocasale RJ; Achuthanandam R; Kam M; Bugelski PJ; Hrebien L
    Cytometry A; 2007 Aug; 71(8):612-24. PubMed ID: 17542025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.