These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 10873810)

  • 1. Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain.
    Braddick OJ; O'Brien JM; Wattam-Bell J; Atkinson J; Turner R
    Curr Biol; 2000 Jun; 10(12):731-4. PubMed ID: 10873810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain areas sensitive to coherent visual motion.
    Braddick OJ; O'Brien JM; Wattam-Bell J; Atkinson J; Hartley T; Turner R
    Perception; 2001; 30(1):61-72. PubMed ID: 11257978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dorsal and ventral stream contributions to form-from-motion perception in a patient with form-from motion deficit: a case report.
    Mercier MR; Schwartz S; Spinelli L; Michel CM; Blanke O
    Brain Struct Funct; 2017 Mar; 222(2):1093-1107. PubMed ID: 27318997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dorsal stream development in motion and structure-from-motion perception.
    Klaver P; Lichtensteiger J; Bucher K; Dietrich T; Loenneker T; Martin E
    Neuroimage; 2008 Feb; 39(4):1815-23. PubMed ID: 18096410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional reorganization of the visual dorsal stream as probed by 3-D visual coherence in Williams syndrome.
    Bernardino I; Rebola J; Farivar R; Silva E; Castelo-Branco M
    J Cogn Neurosci; 2014 Nov; 26(11):2624-36. PubMed ID: 24800629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Visual Motion Sensitivity: Associations with Parietal Area and Children's Mathematical Cognition.
    Braddick O; Atkinson J; Newman E; Akshoomoff N; Kuperman JM; Bartsch H; Chen CH; Dale AM; Jernigan TL
    J Cogn Neurosci; 2016 Dec; 28(12):1897-1908. PubMed ID: 27458748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study.
    James TW; Culham J; Humphrey GK; Milner AD; Goodale MA
    Brain; 2003 Nov; 126(Pt 11):2463-75. PubMed ID: 14506065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cerebral activity related to the visual perception of forward motion in depth.
    de Jong BM; Shipp S; Skidmore B; Frackowiak RS; Zeki S
    Brain; 1994 Oct; 117 ( Pt 5)():1039-54. PubMed ID: 7953587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional neuroanatomy of biological motion perception in humans.
    Vaina LM; Solomon J; Chowdhury S; Sinha P; Belliveau JW
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11656-61. PubMed ID: 11553776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual perception of motion and 3-D structure from motion: an fMRI study.
    Paradis AL; Cornilleau-Pérès V; Droulez J; Van De Moortele PF; Lobel E; Berthoz A; Le Bihan D; Poline JB
    Cereb Cortex; 2000 Aug; 10(8):772-83. PubMed ID: 10920049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional segregation of color and motion processing in the human visual cortex: clinical evidence.
    Vaina LM
    Cereb Cortex; 1994; 4(5):555-72. PubMed ID: 7833656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal correlates of motion-defined shape perception in primate dorsal and ventral streams.
    Handa T; Mikami A
    Eur J Neurosci; 2018 Nov; 48(10):3171-3185. PubMed ID: 30118167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific retinotopically based magnocellular impairment in a patient with medial visual dorsal stream damage.
    Castelo-Branco M; Mendes M; Silva MF; Januário C; Machado E; Pinto A; Figueiredo P; Freire A
    Neuropsychologia; 2006; 44(2):238-53. PubMed ID: 16005479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping multiple visual areas in the human brain with a short fMRI sequence.
    Stiers P; Peeters R; Lagae L; Van Hecke P; Sunaert S
    Neuroimage; 2006 Jan; 29(1):74-89. PubMed ID: 16154766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human cortical object recognition from a visual motion flowfield.
    Kriegeskorte N; Sorger B; Naumer M; Schwarzbach J; van den Boogert E; Hussy W; Goebel R
    J Neurosci; 2003 Feb; 23(4):1451-63. PubMed ID: 12598634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human cortical regions activated by wide-field visual motion: an H2(15)O PET study.
    Cheng K; Fujita H; Kanno I; Miura S; Tanaka K
    J Neurophysiol; 1995 Jul; 74(1):413-27. PubMed ID: 7472342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of human ventral visual cortex in motion perception.
    Gilaie-Dotan S; Saygin AP; Lorenzi LJ; Egan R; Rees G; Behrmann M
    Brain; 2013 Sep; 136(Pt 9):2784-98. PubMed ID: 23983030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain.
    Bartels A; Zeki S; Logothetis NK
    Cereb Cortex; 2008 Mar; 18(3):705-17. PubMed ID: 17615246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From genes to brain development to phenotypic behavior: "dorsal-stream vulnerability" in relation to spatial cognition, attention, and planning of actions in Williams syndrome (WS) and other developmental disorders.
    Atkinson J; Braddick O
    Prog Brain Res; 2011; 189():261-83. PubMed ID: 21489394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional signalers of changes in visual stimuli: cortical responses to increments and decrements in motion coherence.
    Costagli M; Ueno K; Sun P; Gardner JL; Wan X; Ricciardi E; Pietrini P; Tanaka K; Cheng K
    Cereb Cortex; 2014 Jan; 24(1):110-8. PubMed ID: 23010749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.