These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 10875333)
1. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Zheng L; Campbell M; Murphy J; Lam S; Xu JR Mol Plant Microbe Interact; 2000 Jul; 13(7):724-32. PubMed ID: 10875333 [TBL] [Abstract][Full Text] [Related]
2. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Schamber A; Leroch M; Diwo J; Mendgen K; Hahn M Mol Plant Pathol; 2010 Jan; 11(1):105-19. PubMed ID: 20078780 [TBL] [Abstract][Full Text] [Related]
3. The signalling mucin Msb2 regulates surface sensing and host penetration via BMP1 MAP kinase signalling in Botrytis cinerea. Leroch M; Mueller N; Hinsenkamp I; Hahn M Mol Plant Pathol; 2015 Oct; 16(8):787-98. PubMed ID: 25582910 [TBL] [Abstract][Full Text] [Related]
4. Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Doehlemann G; Berndt P; Hahn M Mol Microbiol; 2006 Feb; 59(3):821-35. PubMed ID: 16420354 [TBL] [Abstract][Full Text] [Related]
5. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Gronover CS; Kasulke D; Tudzynski P; Tudzynski B Mol Plant Microbe Interact; 2001 Nov; 14(11):1293-302. PubMed ID: 11763127 [TBL] [Abstract][Full Text] [Related]
6. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Zhao X; Kim Y; Park G; Xu JR Plant Cell; 2005 Apr; 17(4):1317-29. PubMed ID: 15749760 [TBL] [Abstract][Full Text] [Related]
7. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P mBio; 2020 Aug; 11(4):. PubMed ID: 32753496 [TBL] [Abstract][Full Text] [Related]
8. The Gβ-like protein Bcgbl1 regulates development and pathogenicity of the gray mold Botrytis cinerea via modulating two MAP kinase signaling pathways. Tang J; Sui Z; Li R; Xu Y; Xiang L; Fu S; Wei J; Cai X; Wu M; Zhang J; Chen W; Wei Y; Li G; Yang L PLoS Pathog; 2023 Dec; 19(12):e1011839. PubMed ID: 38048363 [TBL] [Abstract][Full Text] [Related]
9. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction. Seifi H; De Vleesschauwer D; Aziz A; Höfte M Plant Signal Behav; 2014; 9(2):e27995. PubMed ID: 24521937 [TBL] [Abstract][Full Text] [Related]
10. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits. Rui O; Hahn M Microbiology (Reading); 2007 Aug; 153(Pt 8):2791-2802. PubMed ID: 17660443 [TBL] [Abstract][Full Text] [Related]
11. Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Doehlemann G; Molitor F; Hahn M Fungal Genet Biol; 2005 Jul; 42(7):601-10. PubMed ID: 15950157 [TBL] [Abstract][Full Text] [Related]
12. A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea. Saitoh Y; Izumitsu K; Morita A; Tanaka C Mol Genet Genomics; 2010 Jul; 284(1):33-43. PubMed ID: 20526618 [TBL] [Abstract][Full Text] [Related]
13. [Cloning of a homologous gene of Magnaporthe grisea PMK1 type MAPK from Ustilaginoidea virens and functional identification by complement in Magnaporthe grisea corresponding mutant]. Zhang Z; Du X; Chai R; Wang J; Qiu H; Mao X; Sun G Wei Sheng Wu Xue Bao; 2008 Nov; 48(11):1473-8. PubMed ID: 19149162 [TBL] [Abstract][Full Text] [Related]
14. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Michielse CB; Becker M; Heller J; Moraga J; Collado IG; Tudzynski P Mol Plant Microbe Interact; 2011 Sep; 24(9):1074-85. PubMed ID: 21635139 [TBL] [Abstract][Full Text] [Related]
15. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. ten Have A; Mulder W; Visser J; van Kan JA Mol Plant Microbe Interact; 1998 Oct; 11(10):1009-16. PubMed ID: 9768518 [TBL] [Abstract][Full Text] [Related]
16. Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea. Schumacher J; Pradier JM; Simon A; Traeger S; Moraga J; Collado IG; Viaud M; Tudzynski B PLoS One; 2012; 7(10):e47840. PubMed ID: 23118899 [TBL] [Abstract][Full Text] [Related]
17. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Park G; Xue C; Zheng L; Lam S; Xu JR Mol Plant Microbe Interact; 2002 Mar; 15(3):183-92. PubMed ID: 11952120 [TBL] [Abstract][Full Text] [Related]
18. The Autophagy Gene Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212 [TBL] [Abstract][Full Text] [Related]
19. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672 [TBL] [Abstract][Full Text] [Related]
20. The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Gourgues M; Brunet-Simon A; Lebrun MH; Levis C Mol Microbiol; 2004 Feb; 51(3):619-29. PubMed ID: 14731267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]