BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 10875333)

  • 1. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea.
    Zheng L; Campbell M; Murphy J; Lam S; Xu JR
    Mol Plant Microbe Interact; 2000 Jul; 13(7):724-32. PubMed ID: 10875333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea.
    Schamber A; Leroch M; Diwo J; Mendgen K; Hahn M
    Mol Plant Pathol; 2010 Jan; 11(1):105-19. PubMed ID: 20078780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The signalling mucin Msb2 regulates surface sensing and host penetration via BMP1 MAP kinase signalling in Botrytis cinerea.
    Leroch M; Mueller N; Hinsenkamp I; Hahn M
    Mol Plant Pathol; 2015 Oct; 16(8):787-98. PubMed ID: 25582910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia.
    Doehlemann G; Berndt P; Hahn M
    Mol Microbiol; 2006 Feb; 59(3):821-35. PubMed ID: 16420354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea.
    Gronover CS; Kasulke D; Tudzynski P; Tudzynski B
    Mol Plant Microbe Interact; 2001 Nov; 14(11):1293-302. PubMed ID: 11763127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea.
    Zhao X; Kim Y; Park G; Xu JR
    Plant Cell; 2005 Apr; 17(4):1317-29. PubMed ID: 15749760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in
    Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P
    mBio; 2020 Aug; 11(4):. PubMed ID: 32753496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Gβ-like protein Bcgbl1 regulates development and pathogenicity of the gray mold Botrytis cinerea via modulating two MAP kinase signaling pathways.
    Tang J; Sui Z; Li R; Xu Y; Xiang L; Fu S; Wei J; Cai X; Wu M; Zhang J; Chen W; Wei Y; Li G; Yang L
    PLoS Pathog; 2023 Dec; 19(12):e1011839. PubMed ID: 38048363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction.
    Seifi H; De Vleesschauwer D; Aziz A; Höfte M
    Plant Signal Behav; 2014; 9(2):e27995. PubMed ID: 24521937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits.
    Rui O; Hahn M
    Microbiology (Reading); 2007 Aug; 153(Pt 8):2791-2802. PubMed ID: 17660443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea.
    Doehlemann G; Molitor F; Hahn M
    Fungal Genet Biol; 2005 Jul; 42(7):601-10. PubMed ID: 15950157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A copper-transporting ATPase BcCCC2 is necessary for pathogenicity of Botrytis cinerea.
    Saitoh Y; Izumitsu K; Morita A; Tanaka C
    Mol Genet Genomics; 2010 Jul; 284(1):33-43. PubMed ID: 20526618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cloning of a homologous gene of Magnaporthe grisea PMK1 type MAPK from Ustilaginoidea virens and functional identification by complement in Magnaporthe grisea corresponding mutant].
    Zhang Z; Du X; Chai R; Wang J; Qiu H; Mao X; Sun G
    Wei Sheng Wu Xue Bao; 2008 Nov; 48(11):1473-8. PubMed ID: 19149162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites.
    Michielse CB; Becker M; Heller J; Moraga J; Collado IG; Tudzynski P
    Mol Plant Microbe Interact; 2011 Sep; 24(9):1074-85. PubMed ID: 21635139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea.
    ten Have A; Mulder W; Visser J; van Kan JA
    Mol Plant Microbe Interact; 1998 Oct; 11(10):1009-16. PubMed ID: 9768518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea.
    Schumacher J; Pradier JM; Simon A; Traeger S; Moraga J; Collado IG; Viaud M; Tudzynski B
    PLoS One; 2012; 7(10):e47840. PubMed ID: 23118899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea.
    Park G; Xue C; Zheng L; Lam S; Xu JR
    Mol Plant Microbe Interact; 2002 Mar; 15(3):183-92. PubMed ID: 11952120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Autophagy Gene
    Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea.
    Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T
    Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves.
    Gourgues M; Brunet-Simon A; Lebrun MH; Levis C
    Mol Microbiol; 2004 Feb; 51(3):619-29. PubMed ID: 14731267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.