BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 10875334)

  • 1. Nodule invasion and symbiosome differentiation during Rhizobium etli-Phaseolus vulgaris symbiosis.
    Cermola M; Fedorova E; Taté R; Riccio A; Favre R; Patriarca EJ
    Mol Plant Microbe Interact; 2000 Jul; 13(7):733-41. PubMed ID: 10875334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Rhizobium etli trpB gene is essential for an effective symbiotic interaction with Phaseolus vulgaris.
    Taté R; Riccio A; Caputo E; Cermola M; Favre R; Patriarca EJ
    Mol Plant Microbe Interact; 1999 Oct; 12(10):926-33. PubMed ID: 10517032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auxotrophic mutant strains of Rhizobium etli reveal new nodule development phenotypes.
    Ferraioli S; Tatè R; Cermola M; Favre R; Iaccarino M; Patriarca EJ
    Mol Plant Microbe Interact; 2002 May; 15(5):501-10. PubMed ID: 12036281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of the addition of specific lectin on the symbiosis of Rhizobium leguminosarum and Phaseolus vulgaris].
    Mestrallet MG; Defilpo SS; Abril A
    Rev Argent Microbiol; 1999; 31(2):72-7. PubMed ID: 10425662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of ectopic roots from abortive nodule primordia.
    Ferraioli S; Tatè R; Rogato A; Chiurazzi M; Patriarca EJ
    Mol Plant Microbe Interact; 2004 Oct; 17(10):1043-50. PubMed ID: 15497397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors.
    Kondorosi E; Mergaert P; Kereszt A
    Annu Rev Microbiol; 2013; 67():611-28. PubMed ID: 24024639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host genes involved in nodulation preference in common bean (Phaseolus vulgaris)-rhizobium etli symbiosis revealed by suppressive subtractive hybridization.
    Meschini EP; Blanco FA; Zanetti ME; Beker MP; Küster H; Pühler A; Aguilar OM
    Mol Plant Microbe Interact; 2008 Apr; 21(4):459-68. PubMed ID: 18321191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coevolution in Rhizobium-legume symbiosis?
    Martínez-Romero E
    DNA Cell Biol; 2009 Aug; 28(8):361-70. PubMed ID: 19485766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Rhizobium etli amtB gene coding for an NH4+ transporter is down-regulated early during bacteroid differentiation.
    Taté R; Riccio A; Merrick M; Patriarca EJ
    Mol Plant Microbe Interact; 1998 Mar; 11(3):188-98. PubMed ID: 9487694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipochitooligosaccharides and legume Rhizobium symbiosis--a new concept.
    Chimote V; Kashyap LR
    Indian J Exp Biol; 2001 May; 39(5):401-9. PubMed ID: 11510121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental and modelling exploration of the host-sanction hypothesis in legume-rhizobia mutualism.
    Marco DE; Carbajal JP; Cannas S; Pérez-Arnedo R; Hidalgo-Perea A; Olivares J; Ruiz-Sainz JE; Sanjuán J
    J Theor Biol; 2009 Aug; 259(3):423-33. PubMed ID: 19358857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unbearable naivety of legumes in symbiosis.
    Den Herder G; Parniske M
    Curr Opin Plant Biol; 2009 Aug; 12(4):491-9. PubMed ID: 19632141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Functional activity of exoglycans from Rhizobium leguminosarum bv. viciae 250a and its nitrogen-resistant mutant M-71 during the formation of legume-rhizobia symbiosis against a high-nitrogen background].
    Kosenko LV; Mandrovskaia NM; Krugova ED
    Mikrobiologiia; 2004; 73(3):416-22. PubMed ID: 15315237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PvRACK1 loss-of-function impairs cell expansion and morphogenesis in Phaseolus vulgaris L. root nodules.
    Islas-Flores T; Guillén G; Alvarado-Affantranger X; Lara-Flores M; Sánchez F; Villanueva MA
    Mol Plant Microbe Interact; 2011 Jul; 24(7):819-26. PubMed ID: 21425924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nodule-specific repression of yellow lupin protein R18.
    Madrzak CJ; Kulikova O; Legocki AB
    Acta Biochim Pol; 1989; 36(3-4):275-83. PubMed ID: 2486003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NifA-dependent expression of glutamate dehydrogenase in Rhizobium etli modifies nitrogen partitioning during symbiosis.
    Mendoza A; Valderrama B; Leija A; Mora J
    Mol Plant Microbe Interact; 1998 Feb; 11(2):83-90. PubMed ID: 9450332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lotus japonicus forms early senescent root nodules with Rhizobium etli.
    Banba M; Siddique AB; Kouchi H; Izui K; Hata S
    Mol Plant Microbe Interact; 2001 Feb; 14(2):173-80. PubMed ID: 11204780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells.
    Bonfante P; Genre A; Faccio A; Martini I; Schauser L; Stougaard J; Webb J; Parniske M
    Mol Plant Microbe Interact; 2000 Oct; 13(10):1109-20. PubMed ID: 11043472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular insights into bacteroid development during Rhizobium-legume symbiosis.
    Haag AF; Arnold MF; Myka KK; Kerscher B; Dall'Angelo S; Zanda M; Mergaert P; Ferguson GP
    FEMS Microbiol Rev; 2013 May; 37(3):364-83. PubMed ID: 22998605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Nodulation as a model for studying differentiation in higher plants].
    Pavlova ZB; Lutova LA
    Genetika; 2000 Sep; 36(9):1173-88. PubMed ID: 11042803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.