BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 10875334)

  • 21. Sulphadimethoxine inhibits Phaseolus vulgaris root growth and development of N-fixing nodules.
    Sartorius M; Riccio A; Cermola M; Casoria P; Patriarca EJ; Taté R
    Chemosphere; 2009 Jul; 76(3):306-12. PubMed ID: 19423149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants.
    Velázquez E; Peix A; Zurdo-Piñeiro JL; Palomo JL; Mateos PF; Rivas R; Muñoz-Adelantado E; Toro N; García-Benavides P; Martínez-Molina E
    Mol Plant Microbe Interact; 2005 Dec; 18(12):1325-32. PubMed ID: 16478052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nod factor signaling genes and their function in the early stages of Rhizobium infection.
    Geurts R; Fedorova E; Bisseling T
    Curr Opin Plant Biol; 2005 Aug; 8(4):346-52. PubMed ID: 15955723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacillus polymyxa stimulates increased Rhizobium etli populations and nodulation when co-resident in the rhizosphere of Phaseolus vulgaris.
    Petersen DJ; Srinivasan M; Chanway CP
    FEMS Microbiol Lett; 1996 Sep; 142(2-3):271-6. PubMed ID: 8810510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The Rhizobium-Prosopis symbiosis in the Argentinian Chaco Arido].
    Abril A; González C
    Rev Argent Microbiol; 1994; 26(1):1-8. PubMed ID: 7938496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Varying the abundance of O antigen in Rhizobium etli and its effect on symbiosis with Phaseolus vulgaris.
    Noel KD; Forsberg LS; Carlson RW
    J Bacteriol; 2000 Oct; 182(19):5317-24. PubMed ID: 10986232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation, chemical structures and biological activity of the lipo-chitin oligosaccharide nodulation signals from Rhizobium etli.
    Cárdenas L; Domínguez J; Quinto C; López-Lara IM; Lugtenberg BJ; Spaink HP; Rademaker GJ; Haverkamp J; Thomas-Oates JE
    Plant Mol Biol; 1995 Nov; 29(3):453-64. PubMed ID: 8534845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules.
    Day DA; Poole PS; Tyerman SD; Rosendahl L
    Cell Mol Life Sci; 2001 Jan; 58(1):61-71. PubMed ID: 11229817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of "nodule-specific" host proteins (nodoulins) involved in the development of rhizobium-legume symbiosis.
    Legocki RP; Verma DP
    Cell; 1980 May; 20(1):153-63. PubMed ID: 7388942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Symbiosis of Astragalus cicer with its microsymbionts: partial nodC gene sequence, host plant specificity, and root nodule structure.
    Wdowiak S; Małek W; Sajnaga E; Lotocka B; Stepkowski T; Legocki A
    Antonie Van Leeuwenhoek; 2000 Jul; 78(1):63-71. PubMed ID: 11016697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The monomeric GTPase RabA2 is required for progression and maintenance of membrane integrity of infection threads during root nodule symbiosis.
    Dalla Via V; Traubenik S; Rivero C; Aguilar OM; Zanetti ME; Blanco FA
    Plant Mol Biol; 2017 Apr; 93(6):549-562. PubMed ID: 28074430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacterial attachment as related to cellular recognition in the Rhizobium-legume symbiosis.
    Dazzo FB
    J Supramol Struct Cell Biochem; 1981; 16(1):29-41. PubMed ID: 7299839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organogenesis of legume root nodules.
    Patriarca EJ; Tatè R; Ferraioli S; Iaccarino M
    Int Rev Cytol; 2004; 234():201-62. PubMed ID: 15066376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical protective role of bacterial superoxide dismutase in rhizobium-legume symbiosis.
    Santos R; Hérouart D; Puppo A; Touati D
    Mol Microbiol; 2000 Nov; 38(4):750-9. PubMed ID: 11115110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacteroid development in legume nodules: evolution of mutual benefit or of sacrificial victims?
    Kereszt A; Mergaert P; Kondorosi E
    Mol Plant Microbe Interact; 2011 Nov; 24(11):1300-9. PubMed ID: 21995798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytoplasmic membrane systems involved in bacterium release into soybean nodule cells as studied with two Bradyrhizobium japonicum mutant strains.
    Roth LE; Stacey G
    Eur J Cell Biol; 1989 Jun; 49(1):24-32. PubMed ID: 2759102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis.
    Fauvart M; Michiels J
    FEMS Microbiol Lett; 2008 Aug; 285(1):1-9. PubMed ID: 18616593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biogenesis of the peribacteroid membrane in root nodules.
    Verma DP; Hong Z
    Trends Microbiol; 1996 Sep; 4(9):364-8. PubMed ID: 8885172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glutathione produced by Rhizobium tropici is important to prevent early senescence in common bean nodules.
    Muglia C; Comai G; Spegazzini E; Riccillo PM; Aguilar OM
    FEMS Microbiol Lett; 2008 Sep; 286(2):191-8. PubMed ID: 18657108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Rhizobium etli argC gene is essential for Arginine biosynthesis and nodulation of Phaseolus vulgaris.
    Ferraioli S; Taté R; Caputo E; Lamberti A; Riccio A; Patriarca EJ
    Mol Plant Microbe Interact; 2001 Feb; 14(2):250-4. PubMed ID: 11204789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.