These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10875348)

  • 21. Approximate expressions for viscous attenuation in marine sediments: relating Biot's "critical" and "peak" frequencies.
    Turgut A
    J Acoust Soc Am; 2000 Aug; 108(2):513-8. PubMed ID: 10955615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite-element numerical simulations of seismic attenuation in finely layered rocks.
    Picotti S; Carcione JM; Santos JE; Gei D; Cavallini F
    J Acoust Soc Am; 2020 Oct; 148(4):1978. PubMed ID: 33138489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A technique for estimating one-dimensional diffusion coefficients in low-permeability sedimentary rock using X-ray radiography: comparison with through-diffusion measurements.
    Cavé L; Al T; Xiang Y; Vilks P
    J Contam Hydrol; 2009 Jan; 103(1-2):1-12. PubMed ID: 18838191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities.
    Medici G; West LJ; Mountney NP
    J Contam Hydrol; 2016 Nov; 194():36-58. PubMed ID: 27969550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comments on "On pore fluid viscosity and the wave properties of saturated granular materials including marine sediments" [J. Acoust. Soc. Am. 122, 1486-1501 (2007)].
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2010 Apr; 127(4):2095-8; discussion 2099-102. PubMed ID: 20369987
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poroelastic evaluation of fluid movement through the lacunocanalicular system.
    Goulet GC; Coombe D; Martinuzzi RJ; Zernicke RF
    Ann Biomed Eng; 2009 Jul; 37(7):1390-402. PubMed ID: 19415492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.
    Bourg IC; Ajo-Franklin JB
    Acc Chem Res; 2017 Sep; 50(9):2067-2074. PubMed ID: 28862427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monochromatic Wave of Fluid Pressure in a Porous Rock.
    Li G; Miao Y; Mei Y
    Ground Water; 2023; 61(4):544-551. PubMed ID: 36250973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Displacement propagators of brine flowing within different types of sedimentary rock.
    Verganelakis DA; Crawshaw J; Johns ML; Mantle MD; Scheven U; Sederman AJ; Gladden LF
    Magn Reson Imaging; 2005 Feb; 23(2):349-51. PubMed ID: 15833644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.
    Ogam E; Fellah ZE; Baki P
    J Acoust Soc Am; 2013 Mar; 133(3):1443-57. PubMed ID: 23464016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On wavemodes at the interface of a fluid and a fluid-saturated poroelastic solid.
    van Dalen KN; Drijkoningen GG; Smeulders DM
    J Acoust Soc Am; 2010 Apr; 127(4):2240-51. PubMed ID: 20370005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wettability effect on wave propagation in saturated porous medium.
    Li JX; Rezaee R; Müller TM
    J Acoust Soc Am; 2020 Feb; 147(2):911. PubMed ID: 32113257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A first-order statistical smoothing approximation for the coherent wave field in random porous random media.
    Müller TM; Gurevich B
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1796-805. PubMed ID: 15898626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spherical wave propagation in a poroelastic medium with infinite permeability: time domain solution.
    Ozyazicioglu M
    ScientificWorldJournal; 2014; 2014():813097. PubMed ID: 24701190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shear wave attenuation and micro-fluidics in water-saturated sand and glass beads.
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2014 Jun; 135(6):3264-79. PubMed ID: 24907791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Velocity dispersion and attenuation in granular marine sediments: comparison of measurements with predictions using acoustic models.
    Kimura M
    J Acoust Soc Am; 2011 Jun; 129(6):3544-61. PubMed ID: 21682381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-frequency dispersion from viscous drag at the grain-grain contact in water-saturated sand.
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2008 Nov; 124(5):EL296-301. PubMed ID: 19045681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Research on the Attenuation Characteristics of High-Frequency Elastic Waves in Rock-Like Material.
    Liu X; Xiong F; Xie Q; Yang X; Chen D; Wang S
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.