These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10875349)

  • 1. Model equation for strongly focused finite-amplitude sound beams.
    Kamakura T; Ishiwata T; Matsuda K
    J Acoust Soc Am; 2000 Jun; 107(6):3035-46. PubMed ID: 10875349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harmonic propagation of finite amplitude sound beams: experimental determination of the nonlinearity parameter B/A.
    Labat V; Remenieras JP; Matar OB; Ouahabi A; Patat F
    Ultrasonics; 2000 Mar; 38(1-8):292-6. PubMed ID: 10829676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical method for describing the paraxial region of finite amplitude sound beams.
    Hamilton MF; Khokhlova VA; Rudenko OV
    J Acoust Soc Am; 1997 Mar; 101(3):1298-308. PubMed ID: 9069621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging.
    Yang X; Cleveland RO
    J Acoust Soc Am; 2005 Jan; 117(1):113-23. PubMed ID: 15704404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of harmonic generation in a focused finite-amplitude sound beam.
    Averkiou MA; Hamilton MF
    J Acoust Soc Am; 1995 Dec; 98(6):3439-42. PubMed ID: 8550950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of pulsed finite-amplitude focused sound beams in time domain.
    Tavakkoli J; Cathignol D; Souchon R; Sapozhnikov OA
    J Acoust Soc Am; 1998 Oct; 104(4):2061-72. PubMed ID: 10491689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for description of nonlinear field radiated from a concave source with wide aperture angle.
    Sun M; Zhang D; Gong X
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1435-8. PubMed ID: 16793098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-reversed sound beams of finite amplitude.
    Cunningham KB; Hamilton MF; Brysev AP; Krutyansky LM
    J Acoust Soc Am; 2001 Jun; 109(6):2668-74. PubMed ID: 11425109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic nonlinear focal shift in amplitude modulated moderately focused acoustic beams.
    Jiménez N; Camarena F; González-Salido N
    Ultrasonics; 2017 Mar; 75():106-114. PubMed ID: 27939786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the split-step Padé approach to nonlinear field predictions.
    Kamakura T; Nomura H; Clement GT
    Ultrasonics; 2013 Feb; 53(2):432-8. PubMed ID: 23099121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic nonlinearity parameter tomography for biological tissues via parametric array from a circular piston source--theoretical analysis and computer simulations.
    Zhang D; Chen X; Gong X
    J Acoust Soc Am; 2001 Mar; 109(3):1219-25. PubMed ID: 11303935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paraxial and ray approximations of acoustic vortex beams.
    Gokani CA; Haberman MR; Hamilton MF
    J Acoust Soc Am; 2024 Apr; 155(4):2707-2723. PubMed ID: 38647257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.
    Jing Y; Cleveland RO
    J Acoust Soc Am; 2007 Sep; 122(3):1352. PubMed ID: 17927398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low sidelobe limited diffraction beams in the nonlinear regime.
    Holm S; Prieur F
    J Acoust Soc Am; 2010 Sep; 128(3):1015-20. PubMed ID: 20815438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation.
    Blanc-Benon P; Lipkens B; Dallois L; Hamilton MF; Blackstock DT
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):487-98. PubMed ID: 11837954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuations of spherical waves in a turbulent atmosphere: effect of the axisymmetric approximation in computational methods.
    Salomons EM
    J Acoust Soc Am; 2000 Oct; 108(4):1528-34. PubMed ID: 11051480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.
    Mitri FG
    Ultrasonics; 2017 Feb; 74():62-71. PubMed ID: 27723472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite amplitude method for measuring the nonlinearity parameter BA in small-volume samples using focused ultrasound.
    Saito S
    J Acoust Soc Am; 2010 Jan; 127(1):51-61. PubMed ID: 20058950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1835-44. PubMed ID: 26470046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear parabolic equation model for finite-amplitude sound propagation over porous ground layers.
    Leissing T; Jean P; Defrance J; Soize C
    J Acoust Soc Am; 2009 Aug; 126(2):572-81. PubMed ID: 19640021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.