These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10875379)

  • 1. Temporal dynamics of pitch strength in regular-interval noises: effect of listening region and an auditory model.
    Wiegrebe L; Hirsch HS; Patterson RD; Fastl H
    J Acoust Soc Am; 2000 Jun; 107(6):3343-50. PubMed ID: 10875379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal dynamics of pitch strength in regular interval noises.
    Wiegrebe L; Patterson RD; Demany L; Carlyon RP
    J Acoust Soc Am; 1998 Oct; 104(4):2307-13. PubMed ID: 10491695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Pitch Strength of Bandpass Noise in Normal-Hearing and Hearing-Impaired Listeners.
    Horbach M; Verhey JL; Hots J
    Trends Hear; 2018; 22():2331216518787067. PubMed ID: 30009682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.
    Hertrich I; Mathiak K; Lutzenberger W; Ackermann H
    Neuropsychologia; 2004; 42(13):1814-26. PubMed ID: 15351630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of envelope modulation in spectrally unresolved iterated rippled noise.
    Wiegrebe L; Patterson RD
    Hear Res; 1999 Jun; 132(1-2):94-108. PubMed ID: 10392552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Searching for the time constant of neural pitch extraction.
    Wiegrebe L
    J Acoust Soc Am; 2001 Mar; 109(3):1082-91. PubMed ID: 11303922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pitch strength and pitch dominance of iterated rippled noises in hearing-impaired listeners.
    Leek MR; Summers V
    J Acoust Soc Am; 2001 Jun; 109(6):2944-54. PubMed ID: 11425136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perception of noise-vocoded tone complexes: A time domain analysis based on an auditory filterbank model.
    Shofner WP; Morris H; Mills M
    Hear Res; 2018 Sep; 367():1-16. PubMed ID: 30005269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch.
    Cariani PA; Delgutte B
    J Neurophysiol; 1996 Sep; 76(3):1717-34. PubMed ID: 8890287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pitch, periodicity, and auditory organization.
    Hartmann WM
    J Acoust Soc Am; 1996 Dec; 100(6):3491-502. PubMed ID: 8969472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal representation of iterated rippled noise as a function of delay and sound level in the ventral cochlear nucleus.
    Wiegrebe L; Winter IM
    J Neurophysiol; 2001 Mar; 85(3):1206-19. PubMed ID: 11247990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A time domain description for the pitch strength of iterated rippled noise.
    Yost WA; Patterson R; Sheft S
    J Acoust Soc Am; 1996 Feb; 99(2):1066-78. PubMed ID: 8609290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strength of the pitches associated with ripple noise.
    Yost WA
    J Acoust Soc Am; 1978 Aug; 64(2):485-92. PubMed ID: 712010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Listening experience with iterated rippled noise alters the perception of 'pitch' strength of complex sounds in the chinchilla.
    Shofner WP; Whitmer WM; Yost WA
    J Acoust Soc Am; 2005 Nov; 118(5):3187-97. PubMed ID: 16334899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gap detection as a function of frequency, bandwidth, and level.
    Shailer MJ; Moore BC
    J Acoust Soc Am; 1983 Aug; 74(2):467-73. PubMed ID: 6619424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pitch detection of dynamic iterated rippled noise by humans and a modified auditory model.
    Denham S
    Biosystems; 2005; 79(1-3):199-206. PubMed ID: 15649605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetry of masking between noise and iterated rippled noise: evidence for time-interval processing in the auditory system.
    Krumbholz K; Patterson RD; Nobbe A
    J Acoust Soc Am; 2001 Oct; 110(4):2096-107. PubMed ID: 11681387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory N1 component to gaps in continuous narrowband noises.
    Atcherson SR; Gould HJ; Mendel MI; Ethington CA
    Ear Hear; 2009 Dec; 30(6):687-95. PubMed ID: 19675460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of rippled-spectrum noise from flat-spectrum noise by chinchillas: evidence for a spectral dominance region.
    Shofner WP; Yost WA
    Hear Res; 1997 Aug; 110(1-2):15-24. PubMed ID: 9282885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained BOLD and theta activity in auditory cortex are related to slow stimulus fluctuations rather than to pitch.
    Steinmann I; Gutschalk A
    J Neurophysiol; 2012 Jun; 107(12):3458-67. PubMed ID: 22457459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.