BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 10875446)

  • 1. Methylmercury effects on ion channels and electrical activity in neurons: future directions.
    Shafer TJ
    Cell Mol Biol (Noisy-le-grand); 2000 Jun; 46(4):855-64. PubMed ID: 10875446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of mercurials on ligand- and voltage-gated ion channels: a review.
    Sirois JE; Atchison WD
    Neurotoxicology; 1996; 17(1):63-84. PubMed ID: 8784819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological recording of re-aggregating brain cell cultures on multi-electrode arrays to detect acute neurotoxic effects.
    van Vliet E; Stoppini L; Balestrino M; Eskes C; Griesinger C; Sobanski T; Whelan M; Hartung T; Coecke S
    Neurotoxicology; 2007 Nov; 28(6):1136-46. PubMed ID: 17692379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pyrethroids on voltage-sensitive calcium channels: a critical evaluation of strengths, weaknesses, data needs, and relationship to assessment of cumulative neurotoxicity.
    Shafer TJ; Meyer DA
    Toxicol Appl Pharmacol; 2004 Apr; 196(2):303-18. PubMed ID: 15081275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylmercury-induced neurotoxicity and apoptosis.
    Ceccatelli S; Daré E; Moors M
    Chem Biol Interact; 2010 Nov; 188(2):301-8. PubMed ID: 20399200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overview of modifiers of methylmercury neurotoxicity: chemicals, nutrients, and the social environment.
    Rice DC
    Neurotoxicology; 2008 Sep; 29(5):761-6. PubMed ID: 18722469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system.
    Buzanska L; Sypecka J; Nerini-Molteni S; Compagnoni A; Hogberg HT; del Torchio R; Domanska-Janik K; Zimmer J; Coecke S
    Stem Cells; 2009 Oct; 27(10):2591-601. PubMed ID: 19609937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine.
    van Vliet E; Morath S; Eskes C; Linge J; Rappsilber J; Honegger P; Hartung T; Coecke S
    Neurotoxicology; 2008 Jan; 29(1):1-12. PubMed ID: 18023877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons.
    Hogberg HT; Sobanski T; Novellino A; Whelan M; Weiss DG; Bal-Price AK
    Neurotoxicology; 2011 Jan; 32(1):158-68. PubMed ID: 21056592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [In vitro models for the evaluation of the neurotoxicity of methylmercury. Current state of knowledge].
    Vettori MV; Alinovi R; Belletti S; Goldoni M; Franchini I; Mutti A
    Med Lav; 2003; 94(2):183-91. PubMed ID: 12852200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative risk assessment for developmental neurotoxic effects.
    Razzaghi M; Kodell R
    Risk Anal; 2004 Dec; 24(6):1673-81. PubMed ID: 15660620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylmercury interaction with lymphocyte cholinergic muscarinic receptors in developing rats.
    Coccini T; Randine G; Castoldi AF; Acerbi D; Manzo L
    Environ Res; 2007 Feb; 103(2):229-37. PubMed ID: 16808911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The toxicity, distribution and elimination of methylmercury in mice following intracerebral injection.
    Fair PH; Balthrop JE; Braddon-Galloway S
    Neurotoxicology; 1987; 8(2):281-9. PubMed ID: 3601240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental factors associated with a spectrum of neurodevelopmental deficits.
    Mendola P; Selevan SG; Gutter S; Rice D
    Ment Retard Dev Disabil Res Rev; 2002; 8(3):188-97. PubMed ID: 12216063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical mechanisms of developmental neurotoxicity of methylmercury.
    Slotkin TA; Bartolome J
    Neurotoxicology; 1987; 8(1):65-84. PubMed ID: 2882450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of methylmercury or polychlorinated biphenyls in in vitro models of rat neuronal tissue.
    Meacham CA; Freudenrich TM; Anderson WL; Sui L; Lyons-Darden T; Barone S; Gilbert ME; Mundy WR; Shafer TJ
    Toxicol Appl Pharmacol; 2005 Jun; 205(2):177-87. PubMed ID: 15893545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acceleration of methylmercury-induced cell death of rat cerebellar neurons by brain-derived neurotrophic factor in vitro.
    Sakaue M; Mori N; Makita M; Fujishima K; Hara S; Arishima K; Yamamoto M
    Brain Res; 2009 Jun; 1273():155-62. PubMed ID: 19332029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurodegenerative memory disorders: a potential role of environmental toxins.
    Caban-Holt A; Mattingly M; Cooper G; Schmitt FA
    Neurol Clin; 2005 May; 23(2):485-521. PubMed ID: 15757794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of developmental co-exposure to methylmercury and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) on cholinergic muscarinic receptors in rat brain.
    Coccini T; Randine G; Castoldi AF; Grandjean P; Ostendorp G; Heinzow B; Manzo L
    Neurotoxicology; 2006 Jul; 27(4):468-77. PubMed ID: 16455139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dose-dependent effects of methylmercury administered during neonatal brain spurt in rats.
    Sakamoto M; Kakita A; de Oliveira RB; Sheng Pan H; Takahashi H
    Brain Res Dev Brain Res; 2004 Sep; 152(2):171-6. PubMed ID: 15351505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.