These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 10875446)

  • 21. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurotoxicology risk assessment guidelines: developmental neurotoxicology.
    Tilson HA
    Neurotoxicology; 2000; 21(1-2):189-94. PubMed ID: 10794399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of prenatal methylmercury exposure on brain monoamine oxidase activity and neurobehaviour of rats.
    Beyrouty P; Stamler CJ; Liu JN; Loua KM; Kubow S; Chan HM
    Neurotoxicol Teratol; 2006; 28(2):251-9. PubMed ID: 16490344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gestational exposure to methylmercury alters the developmental pattern of trk-like immunoreactivity in the rat brain and results in cortical dysmorphology.
    Barone S; Haykal-Coates N; Parran DK; Tilson HA
    Brain Res Dev Brain Res; 1998 Jul; 109(1):13-31. PubMed ID: 9706388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methylmercury induces apoptosis in cultured rat dorsal root ganglion neurons.
    Wilke RA; Kolbert CP; Rahimi RA; Windebank AJ
    Neurotoxicology; 2003 Jun; 24(3):369-78. PubMed ID: 12782102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensory and cognitive effects of developmental methylmercury exposure in monkeys, and a comparison to effects in rodents.
    Rice DC
    Neurotoxicology; 1996; 17(1):139-54. PubMed ID: 8784825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High susceptibility of neural stem cells to methylmercury toxicity: effects on cell survival and neuronal differentiation.
    Tamm C; Duckworth J; Hermanson O; Ceccatelli S
    J Neurochem; 2006 Apr; 97(1):69-78. PubMed ID: 16524380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategies and experimental models for evaluating anesthetics: effects on the developing nervous system.
    Wang C; Slikker W
    Anesth Analg; 2008 Jun; 106(6):1643-58. PubMed ID: 18499593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methylmercury induces activation of Notch signaling.
    Bland C; Rand MD
    Neurotoxicology; 2006 Dec; 27(6):982-91. PubMed ID: 16757030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protection of cerebellar granule cells by tocopherols and tocotrienols against methylmercury toxicity.
    Shichiri M; Takanezawa Y; Uchida K; Tamai H; Arai H
    Brain Res; 2007 Nov; 1182():106-15. PubMed ID: 17949699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bromate: concern for developmental neurotoxicity?
    Crofton KM
    Toxicology; 2006 Apr; 221(2-3):212-6. PubMed ID: 16516369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review of the studies of the cardiovascular health effects of methylmercury with consideration of their suitability for risk assessment.
    Stern AH
    Environ Res; 2005 May; 98(1):133-42. PubMed ID: 15721894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurophysiological evidence of methylmercury neurotoxicity.
    Murata K; Grandjean P; Dakeishi M
    Am J Ind Med; 2007 Oct; 50(10):765-71. PubMed ID: 17450510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hazard assessment of methylmercury toxicity to neuronal induction in embryogenesis using human embryonic stem cells.
    Stummann TC; Hareng L; Bremer S
    Toxicology; 2009 Mar; 257(3):117-26. PubMed ID: 19150642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro developmental neurotoxicity (DNT) testing: relevant models and endpoints.
    Bal-Price AK; Hogberg HT; Buzanska L; Lenas P; van Vliet E; Hartung T
    Neurotoxicology; 2010 Sep; 31(5):545-54. PubMed ID: 19969020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excitatory effects of low-level lead exposure on action potential firing of pyramidal neurons in CA1 region of rat hippocampal slices.
    Yan D; Xiao C; Ma FL; Wang L; Luo YY; Liu J; Wang HL; Chen JT; Ruan DY
    J Neurosci Res; 2008 Dec; 86(16):3665-73. PubMed ID: 18683240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene expression profiles following exposure to a developmental neurotoxicant, Aroclor 1254: pathway analysis for possible mode(s) of action.
    Royland JE; Kodavanti PR
    Toxicol Appl Pharmacol; 2008 Sep; 231(2):179-96. PubMed ID: 18602130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of a proposed in vitro test strategy using neuronal and non-neuronal cell systems for detecting neurotoxicity.
    Gartlon J; Kinsner A; Bal-Price A; Coecke S; Clothier RH
    Toxicol In Vitro; 2006 Dec; 20(8):1569-81. PubMed ID: 16959468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Possible developments in neurotoxicity testing in vitro.
    Harvey AL
    Xenobiotica; 1988 Jun; 18(6):625-32. PubMed ID: 3420941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human developmental neurotoxicity of methylmercury: impact of variables and risk modifiers.
    Castoldi AF; Johansson C; Onishchenko N; Coccini T; Roda E; Vahter M; Ceccatelli S; Manzo L
    Regul Toxicol Pharmacol; 2008 Jul; 51(2):201-14. PubMed ID: 18367301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.