These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10875446)

  • 41. Antagonistic effects of methyl-mercury and PCB153 on PC12 cells after a combined and simultaneous exposure.
    Vettori MV; Goldoni M; Caglieri A; Poli D; Folesani G; Ceccatelli S; Mutti A
    Food Chem Toxicol; 2006 Sep; 44(9):1505-12. PubMed ID: 16757078
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Invertebrates in neurotoxicology.
    Salánki J
    Acta Biol Hung; 2000; 51(2-4):287-307. PubMed ID: 11034153
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro toxicity induced by methylmercury on sympathetic neurons is reverted by L-cysteine or glutathione.
    de Melo Reis RA; Herculano AM; da Silva MC; dos Santos RM; do Nascimento JL
    Neurosci Res; 2007 Jul; 58(3):278-84. PubMed ID: 17482303
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat.
    Roda E; Coccini T; Acerbi D; Castoldi A; Bernocchi G; Manzo L
    J Chem Neuroanat; 2008 May; 35(3):285-94. PubMed ID: 18358697
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Embryotoxicity hazard assessment of methylmercury and chromium using embryonic stem cells.
    Stummann TC; Hareng L; Bremer S
    Toxicology; 2007 Dec; 242(1-3):130-43. PubMed ID: 17980949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of axonal morphogenesis by nonlethal, submicromolar concentrations of methylmercury.
    Heidemann SR; Lamoureux P; Atchison WD
    Toxicol Appl Pharmacol; 2001 Jul; 174(1):49-59. PubMed ID: 11437648
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Methylmercury alters Eph and ephrin expression during neuronal differentiation of P19 embryonal carcinoma cells.
    Wilson DT; Polunas MA; Zhou R; Halladay AK; Lowndes HE; Reuhl KR
    Neurotoxicology; 2005 Aug; 26(4):661-74. PubMed ID: 15990172
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Propofol block of I(h) contributes to the suppression of neuronal excitability and rhythmic burst firing in thalamocortical neurons.
    Ying SW; Abbas SY; Harrison NL; Goldstein PA
    Eur J Neurosci; 2006 Jan; 23(2):465-80. PubMed ID: 16420453
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Perinatal co-exposure to methylmercury and PCB153 or PCB126 in rats alters the cerebral cholinergic muscarinic receptors at weaning and puberty.
    Coccini T; Roda E; Castoldi AF; Goldoni M; Poli D; Bernocchi G; Manzo L
    Toxicology; 2007 Aug; 238(1):34-48. PubMed ID: 17618726
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gene expression profiles in the cerebellum and hippocampus following exposure to a neurotoxicant, Aroclor 1254: developmental effects.
    Royland JE; Wu J; Zawia NH; Kodavanti PR
    Toxicol Appl Pharmacol; 2008 Sep; 231(2):165-78. PubMed ID: 18602129
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chronic, low-dose prenatal exposure to methylmercury impairs motor and mnemonic function in adult C57/B6 mice.
    Montgomery KS; Mackey J; Thuett K; Ginestra S; Bizon JL; Abbott LC
    Behav Brain Res; 2008 Aug; 191(1):55-61. PubMed ID: 18436314
    [TBL] [Abstract][Full Text] [Related]  

  • 52. How does trimethyltin affect the brain: facts and hypotheses.
    Koczyk D
    Acta Neurobiol Exp (Wars); 1996; 56(2):587-96. PubMed ID: 8768310
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Factors regulating methyl mercury uptake in a cyanobacterium.
    Pant A; Srivastava SC; Singh SP
    Ecotoxicol Environ Saf; 1995 Oct; 32(1):87-92. PubMed ID: 8565882
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toxicity, distribution, and elimination of thiol complexes of methylmercury after intracerebral injection.
    Fair PH; Balthrop JE; Wade JL; Braddon-Galloway S
    J Toxicol Environ Health; 1986; 19(2):219-33. PubMed ID: 3761382
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrophysiological approaches to studying ethanol targets.
    Treistman SN
    Alcohol Alcohol Suppl; 1991; 1():191-5. PubMed ID: 1726984
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Testing methods for developmental neurotoxicity of environmental chemicals.
    Claudio L; Kwa WC; Russell AL; Wallinga D
    Toxicol Appl Pharmacol; 2000 Apr; 164(1):1-14. PubMed ID: 10739739
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential mechanisms of cocaine-induced developmental neurotoxicity: a minireview.
    Olsen GD
    Neurotoxicology; 1995; 16(1):159-67. PubMed ID: 7603637
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human-induced pluripotent stems cells as a model to dissect the selective neurotoxicity of methylmercury.
    Prince LM; Aschner M; Bowman AB
    Biochim Biophys Acta Gen Subj; 2019 Dec; 1863(12):129300. PubMed ID: 30742955
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Peaceful use of disastrous neurotoxicants.
    Finkelstein Y; Milatovic D; Lazarovici P; Ophir A; Richter ED; Aschner M; Lecht S; Marcinkiewicz C; Lelkes PI; Zaja-Milatovic S; Gupta RC; Brodsky B; Rosengarten A; Proscura E; Shapira E; Wormser U
    Neurotoxicology; 2010 Sep; 31(5):608-20. PubMed ID: 20620165
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vulnerable processes of nervous system development: a review of markers and methods.
    Barone S; Das KP; Lassiter TL; White LD
    Neurotoxicology; 2000; 21(1-2):15-36. PubMed ID: 10794382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.