These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 10875582)
21. Comparison of fundamental frequency nasalance between trained singers and nonsingers for sung vowels. Fowler LP; Morris RJ Ann Otol Rhinol Laryngol; 2007 Oct; 116(10):739-46. PubMed ID: 17987779 [TBL] [Abstract][Full Text] [Related]
22. Spectral-shape features versus formants as acoustic correlates for vowels. Zahorian SA; Jagharghi AJ J Acoust Soc Am; 1993 Oct; 94(4):1966-82. PubMed ID: 8227741 [TBL] [Abstract][Full Text] [Related]
23. Acoustical analysis of the underlying voice differences between two groups of professional singers: opera and country and western. Burns P Laryngoscope; 1986 May; 96(5):549-54. PubMed ID: 3702569 [TBL] [Abstract][Full Text] [Related]
24. Identification of high-pass filtered male, female, and child vowels: The use of high-frequency cues. Donai JJ; Paschall DD J Acoust Soc Am; 2015 Apr; 137(4):1971-82. PubMed ID: 25920848 [TBL] [Abstract][Full Text] [Related]
25. Dynamic specification of coarticulated German vowels: perceptual and acoustical studies. Strange W; Bohn OS J Acoust Soc Am; 1998 Jul; 104(1):488-504. PubMed ID: 9670540 [TBL] [Abstract][Full Text] [Related]
26. Emotions in freely varying and mono-pitched vowels, acoustic and EGG analyses. Waaramaa T; Palo P; Kankare E Logoped Phoniatr Vocol; 2015 Dec; 40(4):156-70. PubMed ID: 24998780 [TBL] [Abstract][Full Text] [Related]
28. The acoustic effects of vowel equalization training in singers. Dromey C; Heaton E; Hopkin JA J Voice; 2011 Nov; 25(6):678-82. PubMed ID: 21216128 [TBL] [Abstract][Full Text] [Related]
29. Linear phoneme boundaries for German synthetic two-formant vowels. Hose B; Langner G; Scheich H Hear Res; 1983 Jan; 9(1):13-25. PubMed ID: 6219082 [TBL] [Abstract][Full Text] [Related]
30. A perceptual model of vowel recognition based on the auditory representation of American English vowels. Syrdal AK; Gopal HS J Acoust Soc Am; 1986 Apr; 79(4):1086-100. PubMed ID: 3700864 [TBL] [Abstract][Full Text] [Related]
31. Effects of age and hearing loss on concurrent vowel identification. Chintanpalli A; Ahlstrom JB; Dubno JR J Acoust Soc Am; 2016 Dec; 140(6):4142. PubMed ID: 28040038 [TBL] [Abstract][Full Text] [Related]
32. Effect of vocal effort on spectral properties of vowels. Liénard JS; Di Benedetto MG J Acoust Soc Am; 1999 Jul; 106(1):411-22. PubMed ID: 10420631 [TBL] [Abstract][Full Text] [Related]
33. Professional male singers' formant tuning strategies for the vowel /a/. Sundberg J; Lã FM; Gill BP Logoped Phoniatr Vocol; 2011 Dec; 36(4):156-67. PubMed ID: 21756222 [TBL] [Abstract][Full Text] [Related]
34. Fundamental frequency effects on thresholds for vowel formant discrimination. Kewley-Port D; Li X; Zheng Y; Neel AT J Acoust Soc Am; 1996 Oct; 100(4 Pt 1):2462-70. PubMed ID: 8865651 [TBL] [Abstract][Full Text] [Related]
35. Perception of vowel height: the role of F1-F0 distance. Hoemeke KA; Diehl RL J Acoust Soc Am; 1994 Aug; 96(2 Pt 1):661-74. PubMed ID: 7930066 [TBL] [Abstract][Full Text] [Related]
36. Speech coding in the auditory nerve: I. Vowel-like sounds. Delgutte B; Kiang NY J Acoust Soc Am; 1984 Mar; 75(3):866-78. PubMed ID: 6707316 [TBL] [Abstract][Full Text] [Related]
37. The relative contributions of speaking fundamental frequency and formant frequencies to gender identification based on isolated vowels. Gelfer MP; Mikos VA J Voice; 2005 Dec; 19(4):544-54. PubMed ID: 16301101 [TBL] [Abstract][Full Text] [Related]
38. Vowel Formants in Normal and Loud Speech. Koenig LL; Fuchs S J Speech Lang Hear Res; 2019 May; 62(5):1278-1295. PubMed ID: 31084509 [TBL] [Abstract][Full Text] [Related]
39. Acoustical analysis of Spanish vowels produced by laryngectomized subjects. Cervera T; Miralles JL; González-Alvarez J J Speech Lang Hear Res; 2001 Oct; 44(5):988-96. PubMed ID: 11708538 [TBL] [Abstract][Full Text] [Related]