These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 1087559)
1. Studies of energy transport in heart cells. Intracellular creatine content as a regulatory factor of frog heart energetics and force of contraction. Saks VA; Rosenshtraukh LV; Undrovinas AI; Smirnov VN; Chazov EI Biochem Med; 1976 Aug; 16(1):21-36. PubMed ID: 1087559 [No Abstract] [Full Text] [Related]
2. [Relationship between the strength of myocardial fiber contraction of frog heart ventricle and processes of intracellular energy transport]. Rozenshtraukh LV; Saks VA; Undrovinas AI; Iushmanova AV; Smirnov VN Fiziol Zh SSSR Im I M Sechenova; 1976 Aug; 62(8):1199-1209. PubMed ID: 1086803 [TBL] [Abstract][Full Text] [Related]
3. Studies of energy transport in heart cells. The effect of creatine phosphate on the frog ventricular contractile force and action potential duration. Rosenshtraukh LV; Saks VA; Undrovinas AI; Chazov EI; Smirnov VN; Sharov VG Biochem Med; 1978 Apr; 19(2):148-64. PubMed ID: 306821 [No Abstract] [Full Text] [Related]
4. [Control of myocardial contractility via action on intracellular energy transport]. Chazov EI; Rozenshtraukh LV; Saks VA; Smirnov VN; Undrovinas AI Patol Fiziol Eksp Ter; 1976; (4):7-13. PubMed ID: 1086996 [No Abstract] [Full Text] [Related]
5. [Effect of creatine phosphate on the slow inward calcium current, action potentials and the strength of myocardial contraction]. Rozenshtraukh LV; Saks VA; Iuriavichius IA; Nesterenko VV; Undrovinas AI Fiziol Zh SSSR Im I M Sechenova; 1979 Mar; 65(3):405-13. PubMed ID: 222629 [TBL] [Abstract][Full Text] [Related]
7. Papaverine blockade of an inward slow Ca2+ current in guinea pig heart. Schneider JA; Brooker G; Sperelakis N J Mol Cell Cardiol; 1975 Nov; 7(11):867-76. PubMed ID: 173857 [No Abstract] [Full Text] [Related]
8. Perfusate cations and contracture and Ca, Cr, PCr, and ATP in rabbit myocardium. Lee YC; Visscher MB Am J Physiol; 1970 Dec; 219(6):1637-41. PubMed ID: 5485680 [No Abstract] [Full Text] [Related]
9. Changes in high-energy phosphate compounds of isolated rat hearts during Ca2+-free perfusion and reperfusion with Ca2+. Bionk AB; Ruigrok TJ; Maas AH; Zimmerman AN J Mol Cell Cardiol; 1976 Dec; 8(12):973-9. PubMed ID: 1018328 [No Abstract] [Full Text] [Related]
10. [Role of creatine phosphokinase systems in regulating the force of myocardial contraction in frog ventricles]. Rozenshtraukh LV; Saks VA; Undrovinas AI; Iuravichus IA; Iushmanova AV Fiziol Zh SSSR Im I M Sechenova; 1977 May; 63(5):681-8. PubMed ID: 302225 [TBL] [Abstract][Full Text] [Related]
11. The effect of creatine on the developed tension and metabolic kinetics of isolated rabbit atria after prolonged cold storage. Kondo N; Shibata S Gen Pharmacol; 1983; 14(6):597-602. PubMed ID: 6229447 [TBL] [Abstract][Full Text] [Related]
12. Effects of chronic dietary creatine feeding on cardiac energy metabolism and on creatine content in heart, skeletal muscle, brain, liver and kidney. Horn M; Frantz S; Remkes H; Laser A; Urban B; Mettenleiter A; Schnackerz K; Neubauer S J Mol Cell Cardiol; 1998 Feb; 30(2):277-84. PubMed ID: 9515004 [TBL] [Abstract][Full Text] [Related]
13. Insulin improves cardiac contractile function and oxygen utilization efficiency during moderate ischemia without compromising myocardial energetics. Tune JD; Mallet RT; Downey HF J Mol Cell Cardiol; 1998 Oct; 30(10):2025-35. PubMed ID: 9799656 [TBL] [Abstract][Full Text] [Related]
14. Functional and energetic consequences of chronic myocardial creatine depletion by beta-guanidinopropionate in perfused hearts and in intact rats. Neubauer S; Hu K; Horn M; Remkes H; Hoffmann KD; Schmidt C; Schmidt TJ; Schnackerz K; Ertl G J Mol Cell Cardiol; 1999 Oct; 31(10):1845-55. PubMed ID: 10525422 [TBL] [Abstract][Full Text] [Related]
15. Electrophysiologic and inotropic effects of O-benzyl-phosphocreatine in rabbit myocardium. Tuganowski W Naunyn Schmiedebergs Arch Pharmacol; 1994 Sep; 350(3):310-4. PubMed ID: 7824048 [TBL] [Abstract][Full Text] [Related]
16. Regulation of energy metabolism by creatine in cardiac and skeletal muscle cells in culture. Seraydarian MW; Artaza L J Mol Cell Cardiol; 1976 Sep; 08(9):669-78. PubMed ID: 972404 [No Abstract] [Full Text] [Related]
17. The cytoplasmic free energy of ATP hydrolysis in isolated rod-shaped rat ventricular myocytes. ter Welle HF; Baartscheer A; Fiolet JW; Schumacher CA J Mol Cell Cardiol; 1988 May; 20(5):435-41. PubMed ID: 3210251 [TBL] [Abstract][Full Text] [Related]
18. Calcium paradox: changes in high-energy phosphate compounds of isolated perfused rat hearts. Boink AB; Ruigrok TJ; Maas AH; Zimmerman AN Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():559-64. PubMed ID: 1031954 [TBL] [Abstract][Full Text] [Related]
19. [Energy-rich phosphate compounds in the myocardium under the influence of adrenaline, noradrenaline and isoproterenol]. Krautzberger W; Kammermeier H; Kammermeier B Pflugers Arch; 1969; 312(1):R6-7. PubMed ID: 5390286 [No Abstract] [Full Text] [Related]