BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 10876655)

  • 1. Morphometric description of the wandering behavior in Drosophila larvae: aberrant locomotion in Na+ and K+ channel mutants revealed by computer-assisted motion analysis.
    Wang JW; Sylwester AW; Reed D; Wu DA; Soll DR; Wu CF
    J Neurogenet; 1997 Nov; 11(3-4):231-54. PubMed ID: 10876655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphometric description of the wandering behavior in Drosophila larvae: a phenotypic analysis of K+ channel mutants.
    Wang JW; Soll DR; Wu CF
    J Neurogenet; 2002; 16(1):45-63. PubMed ID: 12420789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic analysis of larval locomotion in Drosophila chordotonal organ mutants.
    Caldwell JC; Miller MM; Wing S; Soll DR; Eberl DF
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):16053-8. PubMed ID: 14673076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An automated system for quantitative analysis of Drosophila larval locomotion.
    Aleman-Meza B; Jung SK; Zhong W
    BMC Dev Biol; 2015 Feb; 15():11. PubMed ID: 25881248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs.
    Clark MQ; McCumsey SJ; Lopez-Darwin S; Heckscher ES; Doe CQ
    G3 (Bethesda); 2016 Jul; 6(7):2023-31. PubMed ID: 27172197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic modifications of seizure susceptibility and expression by altered excitability in Drosophila Na(+) and K(+) channel mutants.
    Lee J; Wu CF
    J Neurophysiol; 2006 Nov; 96(5):2465-78. PubMed ID: 17041230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation.
    Fox LE; Soll DR; Wu CF
    J Neurosci; 2006 Feb; 26(5):1486-98. PubMed ID: 16452672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae.
    Saraswati S; Fox LE; Soll DR; Wu CF
    J Neurobiol; 2004 Mar; 58(4):425-41. PubMed ID: 14978721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1.
    Ainsley JA; Pettus JM; Bosenko D; Gerstein CE; Zinkevich N; Anderson MG; Adams CM; Welsh MJ; Johnson WA
    Curr Biol; 2003 Sep; 13(17):1557-63. PubMed ID: 12956960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquisition of high-quality digital video of Drosophila larval and adult behaviors from a lateral perspective.
    Zenger B; Wetzel S; Duncan J
    J Vis Exp; 2014 Oct; (92):e51981. PubMed ID: 25350294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory mechanisms controlling the timing of larval developmental and behavioral transitions require the Drosophila DEG/ENaC subunit, Pickpocket1.
    Ainsley JA; Kim MJ; Wegman LJ; Pettus JM; Johnson WA
    Dev Biol; 2008 Oct; 322(1):46-55. PubMed ID: 18674528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new Drosophila model to study the interaction between genetic and environmental factors in Parkinson's disease.
    Varga SJ; Qi C; Podolsky E; Lee D
    Brain Res; 2014 Oct; 1583():277-86. PubMed ID: 25130663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated quantification of locomotion, social interaction, and mate preference in Drosophila mutants.
    Iyengar A; Imoehl J; Ueda A; Nirschl J; Wu CF
    J Neurogenet; 2012 Sep; 26(3-4):306-16. PubMed ID: 23106154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Linear Agarose Channels to Study Drosophila Larval Crawling Behavior.
    Sun X; Heckscher ES
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27929468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient BK outward current enhances motoneurone firing rates during Drosophila larval locomotion.
    Kadas D; Ryglewski S; Duch C
    J Physiol; 2015 Nov; 593(22):4871-88. PubMed ID: 26332699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.
    Guo Y; Wang Y; Zhang W; Meltzer S; Zanini D; Yu Y; Li J; Cheng T; Guo Z; Wang Q; Jacobs JS; Sharma Y; Eberl DF; Göpfert MC; Jan LY; Jan YN; Wang Z
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7243-8. PubMed ID: 27298354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auxiliary Hyperkinetic beta subunit of K+ channels: regulation of firing properties and K+ currents in Drosophila neurons.
    Yao WD; Wu CF
    J Neurophysiol; 1999 May; 81(5):2472-84. PubMed ID: 10322082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel leg-shaking Drosophila mutant defective in a voltage-gated K(+)current and hypersensitive to reactive oxygen species.
    Wang JW; Humphreys JM; Phillips JP; Hilliker AJ; Wu CF
    J Neurosci; 2000 Aug; 20(16):5958-64. PubMed ID: 10934243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic analysis of Drosophila larval locomotion in response to intermittent light pulses.
    Scantlebury N; Sajic R; Campos AR
    Behav Genet; 2007 May; 37(3):513-24. PubMed ID: 17318369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila nociceptors mediate larval aversion to dry surface environments utilizing both the painless TRP channel and the DEG/ENaC subunit, PPK1.
    Johnson WA; Carder JW
    PLoS One; 2012; 7(3):e32878. PubMed ID: 22403719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.