These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 10877935)
1. Phylogenetic analyses of the rhipicephaline ticks indicate that the genus Rhipicephalus is paraphyletic. Murrell A; Campbell NJ; Barker SC Mol Phylogenet Evol; 2000 Jul; 16(1):1-7. PubMed ID: 10877935 [TBL] [Abstract][Full Text] [Related]
2. A total-evidence phylogeny of ticks provides insights into the evolution of life cycles and biogeography. Murrell A; Campbell NJ; Barker SC Mol Phylogenet Evol; 2001 Nov; 21(2):244-58. PubMed ID: 11697919 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters. Beati L; Keirans JE J Parasitol; 2001 Feb; 87(1):32-48. PubMed ID: 11227901 [TBL] [Abstract][Full Text] [Related]
4. Distinguishing species and populations of rhipicephaline ticks with its 2 ribosomal RNA. Barker SC J Parasitol; 1998 Oct; 84(5):887-92. PubMed ID: 9794625 [TBL] [Abstract][Full Text] [Related]
5. Phylogenetic relationships among tick subfamilies (Ixodida: Ixodidae: Argasidae) based on the 18S nuclear rDNA gene. Black WC; Klompen JS; Keirans JE Mol Phylogenet Evol; 1997 Feb; 7(1):129-44. PubMed ID: 9007027 [TBL] [Abstract][Full Text] [Related]
6. Comparative analyses of mitochondrial and nuclear genetic markers for the molecular identification of Rhipicephalus spp. Latrofa MS; Dantas-Torres F; Annoscia G; Cantacessi C; Otranto D Infect Genet Evol; 2013 Dec; 20():422-7. PubMed ID: 24103336 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, beta-tubulin, and LSU rDNA. Hansen K; Lobuglio KF; Pfister DH Mol Phylogenet Evol; 2005 Jul; 36(1):1-23. PubMed ID: 15904853 [TBL] [Abstract][Full Text] [Related]
8. 18S rRNA gene sequences and phylogenetic relationships of European hard-tick species (Acari: Ixodidae). Mangold AJ; Bargues MD; Mas-Coma S Parasitol Res; 1998; 84(1):31-7. PubMed ID: 9491423 [TBL] [Abstract][Full Text] [Related]
9. A phylogenetic analysis of woodpeckers and their allies using 12S, Cyt b, and COI nucleotide sequences (class Aves; order Piciformes). Webb DM; Moore WS Mol Phylogenet Evol; 2005 Aug; 36(2):233-48. PubMed ID: 15869887 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial and nuclear multilocus phylogeny of Rhipicephalus ticks from Kenya. Kanduma EG; Bishop RP; Githaka NW; Skilton RA; Heyne H; Mwacharo JM Mol Phylogenet Evol; 2019 Nov; 140():106579. PubMed ID: 31404610 [TBL] [Abstract][Full Text] [Related]
11. Phylogeny and relationships of pleurotomariid gastropods (Mollusca: Gastropoda): an assessment based on partial 18S rDNA and cytochrome c oxidase I sequences. Harasewych MG; Adamkewicz SL; Blake JA; Saudek D; Spriggs T; Bult CJ Mol Mar Biol Biotechnol; 1997 Mar; 6(1):1-20. PubMed ID: 9116867 [TBL] [Abstract][Full Text] [Related]
12. Phylogeny of the hard ticks (Ixodidae) inferred from 18S rRNA indicates that the genus Aponomma is paraphyletic. Dobson SJ; Barker SC Mol Phylogenet Evol; 1999 Mar; 11(2):288-95. PubMed ID: 10191073 [TBL] [Abstract][Full Text] [Related]
13. Phylogenetic investigations of the stephanoberyciformes and beryciformes, particularly whalefishes (Euteleostei: Cetomimidae), based on partial 12S rDNA and 16S rDNA sequences. Colgan DJ; Zhang C; Paxton JR Mol Phylogenet Evol; 2000 Oct; 17(1):15-25. PubMed ID: 11020301 [TBL] [Abstract][Full Text] [Related]
14. Molecular characterization and phylogenesis of Steganinae (Diptera, Drosophilidae) inferred by the mitochondrial cytochrome c oxidase subunit 1. Otranto D; Stevens JR; Testini G; Cantacessi C; Máca J Med Vet Entomol; 2008 Mar; 22(1):37-47. PubMed ID: 18380652 [TBL] [Abstract][Full Text] [Related]
15. Phylogenetic relationships of Central European wolf spiders (Araneae: lycosidae) inferred from 12S ribosomal DNA sequences. Zehethofer K; Sturmbauer C Mol Phylogenet Evol; 1998 Dec; 10(3):391-8. PubMed ID: 10051391 [TBL] [Abstract][Full Text] [Related]
16. Phylogenetic relationships within the genus Tetrahymena inferred from the cytochrome c oxidase subunit 1 and the small subunit ribosomal RNA genes. Chantangsi C; Lynn DH Mol Phylogenet Evol; 2008 Dec; 49(3):979-87. PubMed ID: 18929672 [TBL] [Abstract][Full Text] [Related]
17. Phylogenetic relationships of the western North American phoxinins (Actinopterygii: Cyprinidae) as inferred from mitochondrial 12S and 16S ribosomal RNA sequences. Simons AM; Mayden RL Mol Phylogenet Evol; 1998 Apr; 9(2):308-29. PubMed ID: 9562988 [TBL] [Abstract][Full Text] [Related]
18. Phylogeny and life history evolution of the genus Chrysoritis within the Aphnaeini (Lepidoptera: Lycaenidae), inferred from mitochondrial cytochrome oxidase I sequences. Rand DB; Heath A; Suderman T; Pierce NE Mol Phylogenet Evol; 2000 Oct; 17(1):85-96. PubMed ID: 11020307 [TBL] [Abstract][Full Text] [Related]
19. Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s.l. derived from mitochondrial DNA. Lavery S; Chan TY; Tam YK; Chu KH Mol Phylogenet Evol; 2004 Apr; 31(1):39-49. PubMed ID: 15019607 [TBL] [Abstract][Full Text] [Related]
20. Phylogeny of the genus Chironomus (Diptera) inferred from DNA sequences of mitochondrial cytochrome b and cytochrome oxidase I. Guryev V; Makarevitch I; Blinov A; Martin J Mol Phylogenet Evol; 2001 Apr; 19(1):9-21. PubMed ID: 11286487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]