These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 10877944)

  • 21. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data.
    Fenn JD; Song H; Cameron SL; Whiting MF
    Mol Phylogenet Evol; 2008 Oct; 49(1):59-68. PubMed ID: 18672078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Building supertrees: an empirical assessment using the grass family (Poaceae).
    Salamin N; Hodkinson TR; Savolainen V
    Syst Biol; 2002 Feb; 51(1):136-50. PubMed ID: 11943096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Whence the red panda?
    Flynn JJ; Nedbal MA; Dragoo JW; Honeycutt RL
    Mol Phylogenet Evol; 2000 Nov; 17(2):190-9. PubMed ID: 11083933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Does choice in model selection affect maximum likelihood analysis?
    Ripplinger J; Sullivan J
    Syst Biol; 2008 Feb; 57(1):76-85. PubMed ID: 18275003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new method to localize and test the significance of incongruence: detecting domain shuffling in the nuclear receptor superfamily.
    Thornton JW; DeSalle R
    Syst Biol; 2000 Jun; 49(2):183-201. PubMed ID: 12118404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PhySIC: a veto supertree method with desirable properties.
    Ranwez V; Berry V; Criscuolo A; Fabre PH; Guillemot S; Scornavacca C; Douzery EJ
    Syst Biol; 2007 Oct; 56(5):798-817. PubMed ID: 17918032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing the relative contribution of molecular and morphological characters in simultaneous analysis trees.
    Baker RH; Yu X; DeSalle R
    Mol Phylogenet Evol; 1998 Jun; 9(3):427-36. PubMed ID: 9667991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systematics of the lizard family pygopodidae with implications for the diversification of Australian temperate biotas.
    Jennings WB; Pianka ER; Donnellan S
    Syst Biol; 2003 Dec; 52(6):757-80. PubMed ID: 14668116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix.
    Koepfli KP; Jenks SM; Eizirik E; Zahirpour T; Van Valkenburgh B; Wayne RK
    Mol Phylogenet Evol; 2006 Mar; 38(3):603-20. PubMed ID: 16503281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B; Diemer K; Thomas PD
    Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates.
    Nyakatura K; Bininda-Emonds OR
    BMC Biol; 2012 Feb; 10():12. PubMed ID: 22369503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular systematics of the Eastern Fence Lizard (Sceloporus undulatus): a comparison of Parsimony, Likelihood, and Bayesian approaches.
    Leaché AD; Reeder TW
    Syst Biol; 2002 Feb; 51(1):44-68. PubMed ID: 11943092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is homoplasy or lineage sorting the source of incongruent mtdna and nuclear gene trees in the stiff-tailed ducks (Nomonyx-Oxyura)?
    McCracken K; Sorenson M
    Syst Biol; 2005 Feb; 54(1):35-55. PubMed ID: 15805009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Failed refutations: further comments on parsimony and likelihood methods and their relationship to Popper's degree of corroboration.
    de Queiroz K; Poe S
    Syst Biol; 2003 Jun; 52(3):352-67. PubMed ID: 12775524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Occurrence of Can-SINEs and intron sequence evolution supports robust phylogeny of pinniped carnivores and their terrestrial relatives.
    Schröder C; Bleidorn C; Hartmann S; Tiedemann R
    Gene; 2009 Dec; 448(2):221-6. PubMed ID: 19563867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amalgamating source trees with different taxonomic levels.
    Berry V; Bininda-Emonds OR; Semple C
    Syst Biol; 2013 Mar; 62(2):231-49. PubMed ID: 23179602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets.
    Manos PS; Soltis PS; Soltis DE; Manchester SR; Oh SH; Bell CD; Dilcher DL; Stone DE
    Syst Biol; 2007 Jun; 56(3):412-30. PubMed ID: 17558964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Congruence of morphological and molecular phylogenies.
    Pisani D; Benton MJ; Wilkinson M
    Acta Biotheor; 2007; 55(3):269-81. PubMed ID: 17657570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficiently resolving the basal clades of a phylogenetic tree using Bayesian and parsimony approaches: a case study using mitogenomic data from 100 higher teleost fishes.
    Simmons MP; Miya M
    Mol Phylogenet Evol; 2004 Apr; 31(1):351-62. PubMed ID: 15019630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (odonata, zygoptera) inferred from ribosomal DNA sequences.
    Dumont HJ; Vanfleteren JR; De Jonckheere JF; H Weekers PH
    Syst Biol; 2005 Jun; 54(3):347-62. PubMed ID: 16012103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.