BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 10877994)

  • 1. The metabolism of quinone-containing alkylating agents: free radical production and measurement.
    Gutierrez PL
    Front Biosci; 2000 Jul; 5():D629-38. PubMed ID: 10877994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radical formation by antitumor quinones.
    Powis G
    Free Radic Biol Med; 1989; 6(1):63-101. PubMed ID: 2492250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation.
    Giulivi C; Cadenas E
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):21-30. PubMed ID: 8037673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosensitization with anticancer agents 19. EPR studies of photodynamic action of calphostin C: formation of semiquinone radical and activated oxygen on illumination with visible light.
    Diwu Z; Lown JW
    Free Radic Biol Med; 1994 May; 16(5):645-52. PubMed ID: 7517910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First electron spin resonance evidence for the production of semiquinone and oxygen free radicals from orellanine, a mushroom nephrotoxin.
    Richard JM; Cantin-Esnault D; Jeunet A
    Free Radic Biol Med; 1995 Oct; 19(4):417-29. PubMed ID: 7590391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase.
    Segura-Aguilar J; Lind C
    Chem Biol Interact; 1989; 72(3):309-24. PubMed ID: 2557982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of metabolism and oxidation-reduction cycling in the cytotoxicity of antitumor quinoneimines and quinonediimines.
    Powis G; Hodnett EM; Santone KS; See KL; Melder DC
    Cancer Res; 1987 May; 47(9):2363-70. PubMed ID: 3032421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox cycling of 2-(x'-mono, -di, -trichlorophenyl)- 1, 4-benzoquinones, oxidation products of polychlorinated biphenyls.
    McLean MR; Twaroski TP; Robertson LW
    Arch Biochem Biophys; 2000 Apr; 376(2):449-55. PubMed ID: 10775433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiquinone radicals from oxygenated polychlorinated biphenyls: electron paramagnetic resonance studies.
    Song Y; Wagner BA; Lehmler HJ; Buettner GR
    Chem Res Toxicol; 2008 Jul; 21(7):1359-67. PubMed ID: 18549251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical.
    Guillén F; Martínez MJ; Muñoz C; Martínez AT
    Arch Biochem Biophys; 1997 Mar; 339(1):190-9. PubMed ID: 9056249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reductive metabolism of diaziquone (AZQ) in the S9 fraction of MCF-7 cells: free radical formation and NAD(P)H: quinone-acceptor oxidoreductase (DT-diaphorase) activity.
    Fisher GR; Gutierrez PL
    Free Radic Biol Med; 1991; 10(6):359-70. PubMed ID: 1654286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Futile redox cycling: implications for oxygen radical toxicity.
    Hochstein P
    Fundam Appl Toxicol; 1983; 3(4):215-7. PubMed ID: 6313461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals,
    Flowers L; Ohnishi ST; Penning TM
    Biochemistry; 1997 Jul; 36(28):8640-8. PubMed ID: 9214311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones.
    Cassagnes LE; Perio P; Ferry G; Moulharat N; Antoine M; Gayon R; Boutin JA; Nepveu F; Reybier K
    Free Radic Biol Med; 2015 Dec; 89():126-34. PubMed ID: 26386287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosensitization with anticancer agents. 20--EPR studies on the photodynamic action of phleichrome: formation of semiquinone radical and activated oxygen species on illumination with visible light.
    Diwu Z; Lown JW
    Free Radic Biol Med; 1995 Feb; 18(2):357-63. PubMed ID: 7538091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAD(P)H:quinone oxidoreductase 1 reduces the mutagenicity of DNA caused by NADPH:P450 reductase-activated metabolites of benzo(a)pyrene quinones.
    Joseph P; Jaiswal AK
    Br J Cancer; 1998 Mar; 77(5):709-19. PubMed ID: 9514048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol oxidation coupled to DT-diaphorase-catalysed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase.
    Ordoñez ID; Cadenas E
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):481-90. PubMed ID: 1530580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase.
    Fourie J; Oleschuk CJ; Guziec F; Guziec L; Fiterman DJ; Monterrosa C; Begleiter A
    Cancer Chemother Pharmacol; 2002 Feb; 49(2):101-10. PubMed ID: 11862423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosensitization with anticancer agents. 17. EPR studies of photodynamic action of hypericin: formation of semiquinone radical and activated oxygen species on illumination.
    Diwu Z; Lown JW
    Free Radic Biol Med; 1993 Feb; 14(2):209-15. PubMed ID: 8381107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.