These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 10877994)

  • 21. Redox chemistry of anthracycline antitumor drugs and use of captodative radicals as tools for its elucidation and control.
    Gaudiano G; Koch TH
    Chem Res Toxicol; 1991; 4(1):2-16. PubMed ID: 1912296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Xanthine oxidase-catalyzed reduction of estrogen quinones to semiquinones and hydroquinones.
    Roy D; Kalyanaraman B; Liehr JG
    Biochem Pharmacol; 1991 Sep; 42(8):1627-31. PubMed ID: 1656992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The enzymatic reduction of actinomycin D to a free radical species.
    Flitter WD; Mason RP
    Arch Biochem Biophys; 1988 Dec; 267(2):632-9. PubMed ID: 2850768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions.
    Jiang C; Garg S; Waite TD
    Environ Sci Technol; 2015 Dec; 49(24):14076-84. PubMed ID: 26579728
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox cycling of quinones reduced by ascorbic acid.
    Njus D; Asmaro K; Li G; Palomino E
    Chem Biol Interact; 2023 Mar; 373():110397. PubMed ID: 36764370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox conversions of methemoglobin during redox cycling of quinones and aromatic nitrocompounds.
    CĂ©nas N; Ollinger K
    Arch Biochem Biophys; 1994 Nov; 315(1):170-6. PubMed ID: 7979395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals.
    Bachur NR; Gordon SL; Gee MV; Kon H
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):954-7. PubMed ID: 34156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ reactivity of electrochemically generated semiquinone on Emodin and its Cu
    Mandal B; Mondal HK; Das S
    Biochem Biophys Res Commun; 2019 Jul; 515(3):505-509. PubMed ID: 31171362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FAD semiquinone stability regulates single- and two-electron reduction of quinones by Anabaena PCC7119 ferredoxin:NADP+ reductase and its Glu301Ala mutant.
    Anusevicius Z; Miseviciene L; Medina M; Martinez-Julvez M; Gomez-Moreno C; Cenas N
    Arch Biochem Biophys; 2005 May; 437(2):144-50. PubMed ID: 15850554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioreductive activation of catechol estrogen-ortho-quinones: aromatization of the B ring in 4-hydroxyequilenin markedly alters quinoid formation and reactivity.
    Shen L; Pisha E; Huang Z; Pezzuto JM; Krol E; Alam Z; van Breemen RB; Bolton JL
    Carcinogenesis; 1997 May; 18(5):1093-101. PubMed ID: 9163701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox cycling of potential antitumor aziridinyl quinones.
    Lusthof KJ; de Mol NJ; Richter W; Janssen LH; Butler J; Hoey BM; Verboom W; Reinhoudt DN
    Free Radic Biol Med; 1992 Dec; 13(6):599-608. PubMed ID: 1334033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioreductive activation of quinones: a mixed blessing.
    Koster AS
    Pharm Weekbl Sci; 1991 Jun; 13(3):123-6. PubMed ID: 1923701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling.
    Li Y; Zhu T; Zhao J; Xu B
    Environ Sci Technol; 2012 Sep; 46(18):10302-9. PubMed ID: 22891791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of free radicals produced during oxidation of etoposide (VP-16) and its catechol and quinone derivatives. An ESR Study.
    Kalyanaraman B; Nemec J; Sinha BK
    Biochemistry; 1989 May; 28(11):4839-46. PubMed ID: 2548593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extracellular activation of fluorinated aziridinylbenzoquinone in HT29 cells EPR studies.
    Giulivi C; Cadenas E
    Chem Biol Interact; 1998 Jun; 113(3):191-204. PubMed ID: 9717518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Free radical formation and DNA strand breakage during metabolism of diaziquone by NAD(P)H quinone-acceptor oxidoreductase (DT-diaphorase) and NADPH cytochrome c reductase.
    Fisher GR; Gutierrez PL
    Free Radic Biol Med; 1991; 11(6):597-607. PubMed ID: 1663902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs.
    Kalyanaraman B; Perez-Reyes E; Mason RP
    Biochim Biophys Acta; 1980 Jun; 630(1):119-30. PubMed ID: 6248123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity of quinone alkylating agents in quinone-resistant cells.
    Begleiter A; Leith MK
    Cancer Res; 1990 May; 50(10):2872-6. PubMed ID: 1692249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals.
    Folkes LK; Christlieb M; Madej E; Stratford MR; Wardman P
    Chem Res Toxicol; 2007 Dec; 20(12):1885-94. PubMed ID: 17941699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymic- and thiol-mediated activation of halogen-substituted diaziridinylbenzoquinones: redox transitions of the semiquinone and semiquinone-thioether species.
    Goin J; Giulivi C; Butler J; Cadenas E
    Free Radic Biol Med; 1995 Mar; 18(3):525-36. PubMed ID: 9101243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.