These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 10878092)

  • 1. Oxygen sensing and K(+)-Cl(-) cotransport.
    Dunham PB
    J Physiol; 2000 Jul; 526 Pt 1(Pt 1):1. PubMed ID: 10878092
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of hemoglobin A and S on the volume- and pH-dependence of K-Cl cotransport in human erythrocyte ghosts.
    Vitoux D; Beuzard Y; Brugnara C
    J Membr Biol; 1999 Feb; 167(3):233-40. PubMed ID: 9929375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport.
    De Franceschi L; Fumagalli L; Olivieri O; Corrocher R; Lowell CA; Berton G
    J Clin Invest; 1997 Jan; 99(2):220-7. PubMed ID: 9005990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species regulate oxygen-sensitive potassium flux in rainbow trout erythrocytes.
    Bogdanova AY; Nikinmaa M
    J Gen Physiol; 2001 Feb; 117(2):181-90. PubMed ID: 11158169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythrocyte K-Cl cotransport: properties and regulation.
    Lauf PK; Bauer J; Adragna NC; Fujise H; Zade-Oppen AM; Ryu KH; Delpire E
    Am J Physiol; 1992 Nov; 263(5 Pt 1):C917-32. PubMed ID: 1443104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional evidence for a pH sensor of erythrocyte K-Cl cotransport through inhibition by internal protons and diethylpyrocarbonate.
    Lauf PK; Adragna NC
    Cell Physiol Biochem; 1998; 8(1-2):46-60. PubMed ID: 9547019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of swelling activation of K-Cl cotransport in inside-out vesicles of LK sheep erythrocyte membranes.
    Kelley SJ; Dunham PB
    Am J Physiol; 1996 Apr; 270(4 Pt 1):C1122-30. PubMed ID: 8928740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of calyculin-inhibited K-Cl cotransport in dog erythrocyte ghosts by exogenous PP-1.
    Krarup T; Dunham PB
    Am J Physiol; 1996 Mar; 270(3 Pt 1):C898-902. PubMed ID: 8638672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Cl-dependent K transport by oxy-deoxyhemoglobin transitions in trout red cells.
    Borgese F; Motais R; GarcĂ­a-Romeu F
    Biochim Biophys Acta; 1991 Jul; 1066(2):252-6. PubMed ID: 1854788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of angiotensin II stimulation of Na-K-Cl cotransport of vascular smooth muscle cells.
    Owen NE; Ridge KM
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C629-36. PubMed ID: 2508481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thermodynamic study of electroneutral K-Cl cotransport in pH- and volume-clamped low K sheep erythrocytes with normal and low internal magnesium.
    Lauf PK; Adragna NC
    J Gen Physiol; 1996 Oct; 108(4):341-50. PubMed ID: 8894982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K-Cl cotransport: immunohistochemical and ion flux studies in human embryonic kidney (HEK293) cells transfected with full-length and C-terminal-domain-truncated KCC1 cDNAs.
    Lauf PK; Zhang J; Gagnon KB; Delpire E; Fyffe RE; Adragna NC
    Cell Physiol Biochem; 2001; 11(3):143-60. PubMed ID: 11410710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of Na-K-2Cl cotransport based on ordered ion binding and glide symmetry.
    Lytle C; McManus TJ; Haas M
    Am J Physiol; 1998 Feb; 274(2):C299-309. PubMed ID: 9486118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ionic strength on the regulation of Na/H exchange and K-Cl cotransport in dog red blood cells.
    Parker JC; Dunham PB; Minton AP
    J Gen Physiol; 1995 Jun; 105(6):677-99. PubMed ID: 7561739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+/K+/Cl- cotransport is stimulated by a Ca(++)-calmodulin-mediated pathway in BALB/c 3T3 fibroblasts.
    Snyder D; Atlan H; Markus M; Panet R
    J Cell Physiol; 1991 Dec; 149(3):497-502. PubMed ID: 1744176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swelling activation of transport pathways in erythrocytes: effects of Cl-, ionic strength, and volume changes.
    Guizouarn H; Motais R
    Am J Physiol; 1999 Jan; 276(1):C210-20. PubMed ID: 9886937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced Na-K-Cl cotransport in vascular smooth muscle cells from spontaneously hypertensive rats.
    O'Donnell ME; Owen NE
    Am J Physiol; 1988 Aug; 255(2 Pt 1):C169-80. PubMed ID: 2841860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume-sensitive K-Cl cotransport in inside-out vesicles made from erythrocyte membranes from sheep of low-K phenotype.
    Kracke GR; Dunham PB
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8575-9. PubMed ID: 2236068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foreign anions modulate volume set point of sheep erythrocyte K-Cl cotransport.
    Lauf PK
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C503-12. PubMed ID: 2003576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H2O2 activates red blood cell K-Cl cotransport via stimulation of a phosphatase.
    Bize I; Dunham PB
    Am J Physiol; 1995 Oct; 269(4 Pt 1):C849-55. PubMed ID: 7485452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.