These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10878233)

  • 1. Modulation of properties of phospholipid membranes by the long-chain polyprenol (C(160)).
    Janas T; Walińska K; Chojnacki T; Swiezewska E; Janas T
    Chem Phys Lipids; 2000 Jun; 106(1):31-40. PubMed ID: 10878233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of hexadecaprenyl diphosphate on phospholipid membranes.
    Janas T; Walińska K
    Biochim Biophys Acta; 2000 Apr; 1464(2):273-83. PubMed ID: 10727614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of hexadecaprenyl monophosphate/dioleoylphosphatidylcholine vesicular lipid bilayers.
    Janas T; Janas T; Walińska K
    J Membr Biol; 2000 Oct; 177(3):259-71. PubMed ID: 11014864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of hexadecaprenol on molecular organisation and transport properties of model membranes.
    Janas T; Nowotarski K; Gruszecki WI; Janas T
    Acta Biochim Pol; 2000; 47(3):661-73. PubMed ID: 11310968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of undecaprenol on bilayer lipid membranes.
    Janas T; Chojnacki T; Swiezewska E; Janas T
    Acta Biochim Pol; 1994; 41(3):351-8. PubMed ID: 7856407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of undecaprenyl phosphate with phospholipid bilayers.
    Janas T; Janas T
    Chem Phys Lipids; 1995 Aug; 77(1):89-97. PubMed ID: 7586095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass.
    Benes M; Billy D; Benda A; Speijer H; Hof M; Hermens WT
    Langmuir; 2004 Nov; 20(23):10129-37. PubMed ID: 15518504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entrapment and Voltage-Driven Reorganization of Hydrophobic Nanoparticles in Planar Phospholipid Bilayers.
    Basham CM; Spittle S; Sangoro J; El-Beyrouthy J; Freeman E; Sarles SA
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54558-54571. PubMed ID: 36459500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies.
    Chernomordik LV; Sukharev SI; Popov SV; Pastushenko VF; Sokirko AV; Abidor IG; Chizmadzhev YA
    Biochim Biophys Acta; 1987 Sep; 902(3):360-73. PubMed ID: 3620466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid subclass specific alterations in the passive ion permeability of membrane bilayers: separation of enthalpic and entropic contributions to transbilayer ion flux.
    Zeng Y; Han X; Gross RW
    Biochemistry; 1998 Feb; 37(8):2346-55. PubMed ID: 9485381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of long-chain bases on polysialic acid-mediated membrane interactions.
    Janas T; Nowotarski K; Janas T
    Biochim Biophys Acta; 2011 Sep; 1808(9):2322-6. PubMed ID: 21616054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of amoebapores and NK-lysin with symmetric phospholipid and asymmetric lipopolysaccharide/phospholipid bilayers.
    Gutsmann T; Riekens B; Bruhn H; Wiese A; Seydel U; Leippe M
    Biochemistry; 2003 Aug; 42(32):9804-12. PubMed ID: 12911324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calorimetric detection of curvature strain in phospholipid bilayers.
    Epand RM; Epand RF
    Biophys J; 1994 May; 66(5):1450-6. PubMed ID: 8061194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration and steric pressures between phospholipid bilayers.
    McIntosh TJ; Simon SA
    Annu Rev Biophys Biomol Struct; 1994; 23():27-51. PubMed ID: 7919783
    [No Abstract]   [Full Text] [Related]  

  • 17. Thermodynamic and structural study of the main phospholipid components comprising the mitochondrial inner membrane.
    Domènech O; Sanz F; Montero MT; Hernández-Borrell J
    Biochim Biophys Acta; 2006 Feb; 1758(2):213-21. PubMed ID: 16556434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of ionic transport through phospholipid-glycolipid artificial bilayers.
    Gambale F; Robello M; Usai C; Marchetti C
    Biochim Biophys Acta; 1982 Dec; 693(1):165-72. PubMed ID: 7150587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth.
    Hardy MD; Yang J; Selimkhanov J; Cole CM; Tsimring LS; Devaraj NK
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8187-92. PubMed ID: 26100914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of lipid interactions in complex bilayers.
    Almeida PF
    Biochim Biophys Acta; 2009 Jan; 1788(1):72-85. PubMed ID: 18775410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.