BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 10878598)

  • 1. Characterization and regulation of rat microglial Ca(2+) release-activated Ca(2+) (CRAC) channel by protein kinases.
    Hahn J; Jung W; Kim N; Uhm DY; Chung S
    Glia; 2000 Aug; 31(2):118-24. PubMed ID: 10878598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monovalent cation permeability and Ca(2+) block of the store-operated Ca(2+) current I(CRAC )in rat basophilic leukemia cells.
    Bakowski D; Parekh AB
    Pflugers Arch; 2002 Mar; 443(5-6):892-902. PubMed ID: 11889590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting gut T cell Ca2+ release-activated Ca2+ channels inhibits T cell cytokine production and T-box transcription factor T-bet in inflammatory bowel disease.
    Di Sabatino A; Rovedatti L; Kaur R; Spencer JP; Brown JT; Morisset VD; Biancheri P; Leakey NA; Wilde JI; Scott L; Corazza GR; Lee K; Sengupta N; Knowles CH; Gunthorpe MJ; McLean PG; MacDonald TT; Kruidenier L
    J Immunol; 2009 Sep; 183(5):3454-62. PubMed ID: 19648266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual regulation of cardiac Na+-K+ pumps and CFTR Cl- channels by protein kinases A and C.
    Erlenkamp S; Glitsch HG; Kockskämper J
    Pflugers Arch; 2002 May; 444(1-2):251-62. PubMed ID: 11976939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the Ca(2+)-activated nonselective cation channel by diacylglycerol analogues in rat cardiomyocytes.
    Guinamard R; Chatelier A; Lenfant J; Bois P
    J Cardiovasc Electrophysiol; 2004 Mar; 15(3):342-8. PubMed ID: 15030426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Ion channels in rat pancreatic beta cells].
    Zeng XH; Lou XL; Qu AL; Wu HX; Zhou Z
    Sheng Li Xue Bao; 2000 Apr; 52(2):98-102. PubMed ID: 11961576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the epithelial calcium channel, ECaC, by intracellular Ca2+.
    Nilius B; Prenen J; Vennekens R; Hoenderop JG; Bindels RJ; Droogmans G
    Cell Calcium; 2001 Jun; 29(6):417-28. PubMed ID: 11352507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noradrenaline reduces the ATP-stimulated phosphorylation of p38 MAP kinase via beta-adrenergic receptors-cAMP-protein kinase A-dependent mechanism in cultured rat spinal microglia.
    Morioka N; Tanabe H; Inoue A; Dohi T; Nakata Y
    Neurochem Int; 2009 Sep; 55(4):226-34. PubMed ID: 19524113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual regulation of heat-activated K+ channel in rat DRG neurons via alpha(1) and beta adrenergic receptors.
    Yamamoto S; Kanno T; Yamada K; Yasuda Y; Nishizaki T
    Life Sci; 2009 Jul; 85(3-4):167-71. PubMed ID: 19470391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cav1.4 encodes a calcium channel with low open probability and unitary conductance.
    Doering CJ; Hamid J; Simms B; McRory JE; Zamponi GW
    Biophys J; 2005 Nov; 89(5):3042-8. PubMed ID: 16085774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excretory-secretory products from Paragonimus westermani increase nitric oxide production in microglia in PKC-dependent and -independent manners.
    Jin Y; Choi IY; Kim C; Hong S; Kim WK
    Neurosci Res; 2009 Oct; 65(2):141-7. PubMed ID: 19539668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+-dependent reduction of IK1 in rat ventricular cells: a novel paradigm for arrhythmia in heart failure?
    Fauconnier J; Lacampagne A; Rauzier JM; Vassort G; Richard S
    Cardiovasc Res; 2005 Nov; 68(2):204-12. PubMed ID: 16083867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K+ channel cAMP activated in guinea pig gallbladder epithelial cells.
    Meyer G; Bazzini C; Bottà G; Garavaglia ML; Simona R; Manfredi R; Sironi C; De Biasi S; Paulmichl M
    Biochem Biophys Res Commun; 2002 Feb; 290(5):1564-72. PubMed ID: 11820801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipopolysaccharide-induced down-regulation of Ca2+ release-activated Ca2+ currents (I CRAC) but not Ca2+-activated TRPM4-like currents (I CAN) in cultured mouse microglial cells.
    Beck A; Penner R; Fleig A
    J Physiol; 2008 Jan; 586(2):427-39. PubMed ID: 17991695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The minimal requirements to use calcium imaging to analyze ICRAC.
    Alansary D; Kilch T; Holzmann C; Peinelt C; Hoth M; Lis A
    Cold Spring Harb Protoc; 2014 Jun; 2014(6):638-42. PubMed ID: 24890204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation of the store-operated calcium current I(CRAC) and the Mg-nucleotide-regulated metal ion current MagNuM.
    Hermosura MC; Monteilh-Zoller MK; Scharenberg AM; Penner R; Fleig A
    J Physiol; 2002 Mar; 539(Pt 2):445-58. PubMed ID: 11882677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-cell recording of calcium release-activated calcium (CRAC) currents in human T lymphocytes.
    Thakur P; Fomina AF
    J Vis Exp; 2010 Dec; (46):. PubMed ID: 21389932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Store-operated Ca
    Tao Y; Mallet RT; Mathis KW; Ma R
    Exp Biol Med (Maywood); 2023 May; 248(5):425-433. PubMed ID: 36533574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kv1.3 inhibition attenuates neuroinflammation through disruption of microglial calcium signaling.
    Fomina AF; Nguyen HM; Wulff H
    Channels (Austin); 2021 Dec; 15(1):67-78. PubMed ID: 33356832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cAMP and Ca²⁺ signaling in secretory epithelia: crosstalk and synergism.
    Ahuja M; Jha A; Maléth J; Park S; Muallem S
    Cell Calcium; 2014 Jun; 55(6):385-93. PubMed ID: 24613710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.