These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 1087862)
1. Energetic aspects of the metabolism of reduced sulphur compounds in Thiobacillus dentrificans. Hoor AT Antonie Van Leeuwenhoek; 1976; 42(4):483-92. PubMed ID: 1087862 [TBL] [Abstract][Full Text] [Related]
2. Cell yield and bioenergetics of Thiomicrospira denitrificans compared with Thiobacillus denitrificans. Timer-ten Hoor A Antonie Van Leeuwenhoek; 1981; 47(3):231-43. PubMed ID: 6791590 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of sulfur compounds and electron transport in Thiobacillus denitrificans. Peeters T; Aleem MI Arch Mikrobiol; 1970; 71(4):319-30. PubMed ID: 4316972 [No Abstract] [Full Text] [Related]
4. Energy conservation in Thiobacillus neapolitanus C6 sulphide and sulphite oxidation. Drozd JW J Gen Microbiol; 1977 Jan; 98(1):309-12. PubMed ID: 188974 [No Abstract] [Full Text] [Related]
5. Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans. Hazeu W; Bijleveld W; Grotenhuis JT; Kakes E; Kuenen JG Antonie Van Leeuwenhoek; 1986; 52(6):507-18. PubMed ID: 3813523 [TBL] [Abstract][Full Text] [Related]
6. Oxidation of thiosulphate and sulphite by Thiobacillus neapolitanus. Skłodowska A Acta Microbiol Pol; 1985; 34(3-4):271-6. PubMed ID: 2421543 [TBL] [Abstract][Full Text] [Related]
7. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph. Harrold ZR; Skidmore ML; Hamilton TL; Desch L; Amada K; van Gelder W; Glover K; Roden EE; Boyd ES Appl Environ Microbiol; 2015 Dec; 82(5):1486-95. PubMed ID: 26712544 [TBL] [Abstract][Full Text] [Related]
8. Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans. Aminuddin M; Nicholas DJ Biochim Biophys Acta; 1973 Oct; 325(1):81-93. PubMed ID: 4770733 [No Abstract] [Full Text] [Related]
9. The formation of sulphite during the oxidation of thiosulphate by Thiobacillus novellus. DE LEY J; VAN POUCKE M Biochim Biophys Acta; 1961 Jun; 50():371-3. PubMed ID: 13720635 [No Abstract] [Full Text] [Related]
10. Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. Bosch J; Lee KY; Jordan G; Kim KW; Meckenstock RU Environ Sci Technol; 2012 Feb; 46(4):2095-101. PubMed ID: 22142180 [TBL] [Abstract][Full Text] [Related]
11. Electron transfer during sulphide and sulphite oxidation by Thiobacillus concretivorus. Moriarty DJ; Nicholas DJ Biochim Biophys Acta; 1970 Aug; 216(1):130-8. PubMed ID: 5497181 [No Abstract] [Full Text] [Related]
12. [35S]thiosulphate oxidation by Thiobacillus strain C. Kelly DP; Syrett PJ Biochem J; 1966 Feb; 98(2):537-45. PubMed ID: 5941348 [TBL] [Abstract][Full Text] [Related]
18. Intermediates of denitrification in the chemoautotroph Thiobacillus denitrificans. Ishaque M; Aleem MI Arch Mikrobiol; 1973 Dec; 94(3):269-82. PubMed ID: 4781593 [No Abstract] [Full Text] [Related]
19. Energy conservation during nitrate respiration in Paracoccus denitrificans. van Verseveld HW; Meijer EM; Stouthamer AH Arch Microbiol; 1977 Feb; 112(1):17-23. PubMed ID: 843167 [TBL] [Abstract][Full Text] [Related]
20. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium. Visscher PT; Taylor BF Appl Environ Microbiol; 1993 Dec; 59(12):4083-9. PubMed ID: 8285707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]