These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 10879849)

  • 1. Application of a low-background gamma-ray spectrometer to the determination of 90Sr.
    Mietelski JW; Meczynski W
    Appl Radiat Isot; 2000 Jul; 53(1-2):121-6. PubMed ID: 10879849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution pattern of 90Sr and 137Cs in the Nile delta and the adjacent regions after Chernobyl accident.
    Shawky S; el-Tahawy M
    Appl Radiat Isot; 1999 Feb; 50(2):435-43. PubMed ID: 10081145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of in vivo measurements of 90Sr + 90Y bremsstrahlung.
    Uehara S; Endo S; Takada J; Hoshi M
    Health Phys; 1998 Jan; 74(1):30-7. PubMed ID: 9415579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated radioanalytical system for the determination of 90Sr in environmental water samples by 90Y Cherenkov radiation counting.
    O'Hara MJ; Burge SR; Grate JW
    Anal Chem; 2009 Feb; 81(3):1228-37. PubMed ID: 19138126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental radionuclides as contaminants of HPGe gamma-ray spectrometers: Monte Carlo simulations for Modane underground laboratory.
    Breier R; Brudanin VB; Loaiza P; Piquemal F; Povinec PP; Rukhadze E; Rukhadze N; Štekl I
    J Environ Radioact; 2018 Oct; 190-191():134-140. PubMed ID: 29793183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximising the sensitivity of a γ spectrometer for low-energy, low-activity radionuclides using Monte Carlo simulations.
    Britton R; Burnett JL; Davies AV; Regan PH
    J Environ Radioact; 2014 Aug; 134():1-5. PubMed ID: 24631843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gamma-ray efficiency of a HPGe detector as a function of energy and geometry.
    Challan MB
    Appl Radiat Isot; 2013 Dec; 82():166-9. PubMed ID: 24007787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the Monte Carlo method for the calibration of an in situ gamma spectrometer.
    Tzika F; Kontogeorgakos D; Vasilopoulou T; Stamatelatos IE
    Appl Radiat Isot; 2010; 68(7-8):1441-4. PubMed ID: 19945289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of natural radionuclides in phosphgypsum using an anti-cosmic gamma-ray spectrometer.
    Ferreux L; Moutard G; Branger T
    Appl Radiat Isot; 2009 May; 67(5):957-60. PubMed ID: 19285421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of cosmic-ray induced background of Germanium gamma spectrometer using GEANT4 simulation.
    Hung NQ; Hai VH; Nomachi M
    Appl Radiat Isot; 2017 Mar; 121():87-90. PubMed ID: 28040602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of background spectrum in a shielded HPGe detector using Monte Carlo simulations.
    Medhat ME; Wang Y
    Appl Radiat Isot; 2014 Feb; 84():13-8. PubMed ID: 24292007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation of the full energy peak efficiency of an HPGe detector.
    Khan W; Zhang Q; He C; Saleh M
    Appl Radiat Isot; 2018 Jan; 131():67-70. PubMed ID: 29173810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A second-generation low-background gamma-ray spectrometer.
    Lindstrom RM
    Appl Radiat Isot; 2017 Aug; 126():191-193. PubMed ID: 28034510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study for improving detection efficiency of an HPGe detector based gamma spectrometer using Monte Carlo simulation and genetic algorithms.
    Huy NQ; Binh DQ; An VX
    Appl Radiat Isot; 2012 Dec; 70(12):2695-702. PubMed ID: 23037923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of X-ray mass attenuation coefficients using HPGe detector.
    Sharanabasappa ; Kerur BR; Anilkumar S; Hanumaiah B
    Appl Radiat Isot; 2010 Jan; 68(1):76-83. PubMed ID: 19726203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lead shielding efficiency from the gamma background measurements in the salt cavern of the Polkowice-Sieroszowice copper mine.
    Polaczek-Grelik K; Kisiel J; Walencik-Łata A; Mietelski JW; Janowski P; Harańczyk M; Jurkowski J; Zalewska A; Kobziński J; Markowski P; Sadowski A
    J Radioanal Nucl Chem; 2016; 308():773-780. PubMed ID: 27226676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low background gamma-ray spectrometer with a large well HPGe detector.
    Byun JI; Hwang HY; Yun JY
    Appl Radiat Isot; 2020 Feb; 156():108932. PubMed ID: 32056682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency transfer using the GEANT4 code of CERN for HPGe gamma spectrometry.
    Chagren S; Tekaya MB; Reguigui N; Gharbi F
    Appl Radiat Isot; 2016 Jan; 107():359-365. PubMed ID: 26623928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The determination of the efficiency of a Compton suppressed HPGe detector using Monte Carlo simulations.
    McNamara AL; Heijnis H; Fierro D; Reinhard MI
    J Environ Radioact; 2012 Apr; 106():1-7. PubMed ID: 22304994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the Effective Detector Area of an Energy-Dispersive X-Ray Spectrometer at the Scanning Electron Microscope Using Experimental and Theoretical X-Ray Emission Yields.
    Procop M; Hodoroaba VD; Terborg R; Berger D
    Microsc Microanal; 2016 Dec; 22(6):1360-1368. PubMed ID: 27776570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.