These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10879948)

  • 1. Relating middle-ear acoustic performance to body size in the cat family: measurements and models.
    Huang GT; Rosowski JJ; Peake WT
    J Comp Physiol A; 2000 May; 186(5):447-65. PubMed ID: 10879948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tests of some common assumptions of ear-canal acoustics in cats.
    Huang GT; Rosowski JJ; Puria S; Peake WT
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1147-61. PubMed ID: 11008816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (Felis margarita).
    Huang GT; Rosowski JJ; Ravicz ME; Peake WT
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Oct; 188(9):663-81. PubMed ID: 12397438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The middle ear of a lion: comparison of structure and function to domestic cat.
    Huang GT; Rosowski JJ; Flandermeyer DT; Lynch TJ; Peake WT
    J Acoust Soc Am; 1997 Mar; 101(3):1532-49. PubMed ID: 9069624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements.
    Teoh SW; Flandermeyer DT; Rosowski JJ
    Hear Res; 1997 Apr; 106(1-2):39-65. PubMed ID: 9112106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of the acoustic input impedance of cat ears: 10 Hz to 20 kHz.
    Lynch TJ; Peake WT; Rosowski JJ
    J Acoust Soc Am; 1994 Oct; 96(4):2184-209. PubMed ID: 7963032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Middle-ear transmission: acoustic versus ossicular coupling in cat and human.
    Peake WT; Rosowski JJ; Lynch TJ
    Hear Res; 1992 Jan; 57(2):245-68. PubMed ID: 1733916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air-leak effects on ear-canal acoustic absorbance.
    Groon KA; Rasetshwane DM; Kopun JG; Gorga MP; Neely ST
    Ear Hear; 2015 Jan; 36(1):155-63. PubMed ID: 25170779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones.
    Voss SE; Rosowski JJ; Shera CA; Peake WT
    J Acoust Soc Am; 2000 Mar; 107(3):1548-65. PubMed ID: 10738809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures that contribute to middle-ear admittance in chinchilla.
    Rosowski JJ; Ravicz ME; Songer JE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1287-311. PubMed ID: 16944166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What middle ear parameters tell about impedance matching and high frequency hearing.
    Hemilä S; Nummela S; Reuter T
    Hear Res; 1995 May; 85(1-2):31-44. PubMed ID: 7559177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for signal transmission in an ear having hair cells with free-standing stereocilia. II. Macromechanical stage.
    Rosowski JJ; Peake WT; Lynch TJ; Leong R; Weiss TF
    Hear Res; 1985; 20(2):139-55. PubMed ID: 3878838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of conductive hearing loss based on acoustic ear-canal response using a multivariate clinical decision theory.
    Piskorski P; Keefe DH; Simmons JL; Gorga MP
    J Acoust Soc Am; 1999 Mar; 105(3):1749-64. PubMed ID: 10089599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Procedures for ambient-pressure and tympanometric tests of aural acoustic reflectance and admittance in human infants and adults.
    Keefe DH; Hunter LL; Feeney MP; Fitzpatrick DF
    J Acoust Soc Am; 2015 Dec; 138(6):3625-53. PubMed ID: 26723319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of the mammalian middle ear. II: Inferring function from structure.
    Mason MJ
    J Anat; 2016 Feb; 228(2):300-12. PubMed ID: 26100915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-Element Modelling of the Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear.
    Motallebzadeh H; Maftoon N; Pitaro J; Funnell WR; Daniel SJ
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):25-48. PubMed ID: 27718037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound-power collection by the auditory periphery of the mongolian gerbil Meriones unguiculatus. II. External-ear radiation impedance and power collection.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1996 May; 99(5):3044-63. PubMed ID: 8642116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the acoustic input immittance of the human ear.
    Rabinowitz WM
    J Acoust Soc Am; 1981 Oct; 70(4):1025-35. PubMed ID: 7288039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.