BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10879957)

  • 1. Separation of closely related peptide substrates of human proteinases by micellar electrokinetic chromatography with anionic and nonionic surfactants.
    Lupi A; Viglio S; Luisetti M; Zanaboni G; Cetta G; Iadarola P
    Electrophoresis; 2000 Jun; 21(10):1985-91. PubMed ID: 10879957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micellar electrokinetic chromatography: a convenient alternative to colorimetric and high performance liquid chromatographic detection to monitor protease activity.
    Viglio S; Zanaboni G; Luisetti M; Cetta G; Guglielminetti M; Iadarola P
    Electrophoresis; 1998 Sep; 19(12):2083-9. PubMed ID: 9761185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous determination of Pseudomonas aeruginosa elastase, human leukocyte elastase and cathepsin G activities by micellar electrokinetic chromatography.
    Viglio S; Luisetti M; Zanaboni G; Döring G; Worlitzsch D; Cetta G; Iadarola P
    J Chromatogr A; 1999 Jun; 846(1-2):125-34. PubMed ID: 10420604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonchromogenic hydrolysis of elastase and cathepsin G p-nitroanilide substrates by Pseudomonas aeruginosa elastase.
    Pelletier A; Dimicoli JL; Boudier C; Bieth JG
    Am J Respir Cell Mol Biol; 1989 Jul; 1(1):37-9. PubMed ID: 2516450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis of alanine oligomers and of elastin by P. aeruginosa proteinases and thermolysin.
    Saulnier J; Thevenon F; Besson C; Duclos MC; Wallach JM
    Biochem Int; 1991 Mar; 23(5):875-84. PubMed ID: 1909126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micellar electrokinetic chromatography for analyzing active site specificity of Pseudomonas aeruginosa elastase.
    Viglio S; Zanaboni G; Lupi A; Gianelli L; Luisetti M; Casali L; Cetta G; Iadarola P
    Electrophoresis; 1999 Jun; 20(7):1578-85. PubMed ID: 10424483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of the human leukocyte proteinases elastase and cathepsin G by various surfactants.
    Wenzel HR; Feldmann A; Engelbrecht S; Tschesche H
    Biol Chem Hoppe Seyler; 1990 Aug; 371(8):721-4. PubMed ID: 2206460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparisons of the separations of some neutral analytes by LC, MEKC, and CEC.
    Taylor RB; Vorarat S; Reid RG; Boyle SP; Moody RR
    J Capill Electrophor Microchip Technol; 1999; 6(3-4):131-6. PubMed ID: 11315153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary zone electrophoresis and micellar electrokinetic chromatography, with taurodeoxycholate as micellar agent, of protein kinase A peptide substrates.
    Beijersten I; Westerlund D
    Electrophoresis; 1996 Jan; 17(1):161-7. PubMed ID: 8907534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human leukocyte elastase and cathepsin G are specific inhibitors of C5a-dependent neutrophil enzyme release and chemotaxis.
    Tralau T; Meyer-Hoffert U; Schröder JM; Wiedow O
    Exp Dermatol; 2004 May; 13(5):316-25. PubMed ID: 15140022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of micellar electrokinetic chromatography to pharmaceutical analysis.
    Nishi H; Terabe S
    Electrophoresis; 1990 Sep; 11(9):691-701. PubMed ID: 2257840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple peptide mapping method by partial filling micellar electrokinetic capillary chromatography with a zwitterionic-nonionic mixed micelle.
    Huang J; Kang J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Feb; 846(1-2):364-7. PubMed ID: 16963322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral surfactants in micellar electrokinetic capillary chromatography.
    Camilleri P
    Electrophoresis; 1997 Nov; 18(12-13):2322-30. PubMed ID: 9456047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micellar electrokinetic chromatography for high-performance analytical separation.
    Terabe S
    Chem Rec; 2008; 8(5):291-301. PubMed ID: 18956478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing of the human transferrin receptor at distinct positions within the stalk region by neutrophil elastase and cathepsin G.
    Kaup M; Dassler K; Reineke U; Weise C; Tauber R; Fuchs H
    Biol Chem; 2002 Jun; 383(6):1011-20. PubMed ID: 12222675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudo-homogeneous micelle extraction of ion-associates formed between tetrabutylammonium ion and some aromatic sulfonate ions into nonionic surfactant micelle studied through the mobility measurements in capillary zone electrophoresis.
    Takayanagi T; Motomizu S
    J Chromatogr A; 2007 Feb; 1141(2):295-301. PubMed ID: 17207490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of E. faecalis on the release of serine proteases elastase and cathepsin G, and collagenase-2 (MMP-8) by human polymorphonuclear leukocytes (PMNs).
    Reynaud af Geijersstam A; Sorsa T; Stackelberg S; Tervahartiala T; Haapasalo M
    Int Endod J; 2005 Sep; 38(9):667-77. PubMed ID: 16104981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-opposite injection electrokinetic chromatography for the unbiased, simultaneous separation of cationic and anionic compounds.
    Durkin D; Foley JP
    Electrophoresis; 2000 Jun; 21(10):1997-2009. PubMed ID: 10879959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leukoproteinases and pulmonary emphysema: cathepsin G and other chymotrypsin-like proteinases enhance the elastolytic activity of elastase on lung elastin.
    Boudier C; Laurent P; Bieth JG
    Adv Exp Med Biol; 1984; 167():313-7. PubMed ID: 6369910
    [No Abstract]   [Full Text] [Related]  

  • 20. Adsorption and micellar properties of a mixed system of nonionic-nonionic surfactants.
    Islam MN; Kato T
    J Colloid Interface Sci; 2005 Sep; 289(2):581-7. PubMed ID: 16024033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.