These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 10879960)
21. Increasing the scale of true moving bed electrophoretic separations using filtration to reduce solvent volumetric flows between sections II and III. Thome BM; Ivory CF J Chromatogr A; 2007 Jan; 1138(1-2):291-300. PubMed ID: 17097668 [TBL] [Abstract][Full Text] [Related]
22. Synthesis of heptakis(2-O-methyl-3-O-acetyl-6-O-sulfo)-cyclomaltoheptaose, a single-isomer, sulfated beta-cyclodextrin carrying nonidentical substituents at all the C2, C3, and C6 positions and its use for the capillary electrophoretic separation of enantiomers in acidic aqueous and methanolic background electrolytes. Busby MB; Vigh G Electrophoresis; 2005 May; 26(10):1978-87. PubMed ID: 15818578 [TBL] [Abstract][Full Text] [Related]
23. Enhancement of selectivity and resolution in the enantioseparation of uncharged compounds using mixtures of oppositely charged cyclodextrins in capillary electrophoresis. Abushoffa AM; Fillet M; Servais AC; Hubert P; Crommen J Electrophoresis; 2003 Jan; 24(3):343-50. PubMed ID: 12569526 [TBL] [Abstract][Full Text] [Related]
24. Velocity gap mode of capillary electrophoresis developed for high-resolution chiral separations. Li X; Li Y; Zhao L; Shen J; Zhang Y; Bao JJ Electrophoresis; 2014 Oct; 35(19):2778-84. PubMed ID: 24891034 [TBL] [Abstract][Full Text] [Related]
25. Development of a segmented model for a continuous electrophoretic moving bed enantiomer separation. Thome BM; Ivory CF Biotechnol Prog; 2003; 19(6):1703-12. PubMed ID: 14656145 [TBL] [Abstract][Full Text] [Related]
26. Terbutaline enantiomer separation and quantification by complexation and field asymmetric ion mobility spectrometry-tandem mass spectrometry. Mie A; Ray A; Axelsson BO; Jörntén-Karlsson M; Reimann CT Anal Chem; 2008 Jun; 80(11):4133-40. PubMed ID: 18447322 [TBL] [Abstract][Full Text] [Related]
27. Synthesis, analytical characterization and use of octakis(2,3-di-O-methyl-6-O-sulfo)-gamma-cyclodextrin, a novel, single-isomer, chiral resolving agent in low-pH background electrolytes. Busby MB; Lim P; Vigh G Electrophoresis; 2003 Jan; 24(3):351-62. PubMed ID: 12569527 [TBL] [Abstract][Full Text] [Related]
28. Use of full-column imaging capillary isoelectric focusing for the rapid determination of the operating conditions in the preparative-scale continuous free-flow isoelectric focusing separation of enantiomers. Spanik I; Lim P; Vigh G J Chromatogr A; 2002 Jun; 960(1-2):241-6. PubMed ID: 12150562 [TBL] [Abstract][Full Text] [Related]
29. Continuous fractionation of enantiomer pairs in free solution using an electrophoretic analog of simulated moving bed chromatography. Thome B; Ivory CF J Chromatogr A; 2002 Apr; 953(1-2):263-77. PubMed ID: 12058940 [TBL] [Abstract][Full Text] [Related]
30. New cyclomaltoheptaose (beta-cyclodextrin) derivative 2-O-(2-hydroxybutyl)cyclomaltoheptaose: preparation and its application for the separation of enantiomers of drugs by capillary electrophoresis. Zhao MG; Hao AY; Li J; Wei YH; Guo P Carbohydr Res; 2005 Jun; 340(8):1563-5. PubMed ID: 15882853 [TBL] [Abstract][Full Text] [Related]
31. Model of CE enantioseparation systems with a mixture of chiral selectors. Part II. Determination of thermodynamic parameters of the interconversion in chiral and achiral environments separately. Dubský P; Svobodová J; Tesarová E; Gas B J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Nov; 875(1):35-41. PubMed ID: 18703387 [TBL] [Abstract][Full Text] [Related]
32. Migration order of dipeptide and tripeptide enantiomers in the presence of single isomer and randomly sulfated cyclodextrins as a function of pH. Süss F; Sänger-van de Griend CE; Scriba GK Electrophoresis; 2003 Mar; 24(6):1069-76. PubMed ID: 12658697 [TBL] [Abstract][Full Text] [Related]
33. Dynamic computer simulation of electrophoretic enantiomer migration order and separation in presence of a neutral cyclodextrin. Thormann W; Chankvetadze L; Gumustas M; Chankvetadze B Electrophoresis; 2014 Oct; 35(19):2833-41. PubMed ID: 24810231 [TBL] [Abstract][Full Text] [Related]
35. Recent innovations in the use of charged cyclodextrins in capillary electrophoresis for chiral separations in pharmaceutical analysis. de Boer T; de Zeeuw RA; de Jong GJ; Ensing K Electrophoresis; 2000 Sep; 21(15):3220-39. PubMed ID: 11001221 [TBL] [Abstract][Full Text] [Related]
36. Preparative HPLC separation of bambuterol enantiomers and stereoselective inhibition of human cholinesterases. Gazić I; Bosak A; Sinko G; Vinković V; Kovarik Z Anal Bioanal Chem; 2006 Aug; 385(8):1513-9. PubMed ID: 16865342 [TBL] [Abstract][Full Text] [Related]
37. Comparative enantioseparations with native beta-cyclodextrin and heptakis-(2-O-methyl- 3,6-di-O-sulfo)-beta-cyclodextrin in capillary electrophoresis. Chankvetadze B; Burjanadze N; Maynard DM; Bergander K; Bergenthal D; Blaschke G Electrophoresis; 2002 Sep; 23(17):3027-34. PubMed ID: 12207312 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous concentration and separation of enantiomers with chiral temperature gradient focusing. Balss KM; Vreeland WN; Phinney KW; Ross D Anal Chem; 2004 Dec; 76(24):7243-9. PubMed ID: 15595865 [TBL] [Abstract][Full Text] [Related]
39. Dynamics of interconversion of enantiomers in chiral separation systems: a novel approach for determination of all rate constants involved in the interconversion. Dubský P; Tesarová E; Gas B Electrophoresis; 2004 Feb; 25(4-5):733-42. PubMed ID: 14981702 [TBL] [Abstract][Full Text] [Related]
40. pH-dependence of complexion constants and complex mobility in capillary electrophoresis separations of dipeptide enantiomers. Sabbah S; Süss F; Scriba GK Electrophoresis; 2001 Sep; 22(15):3163-70. PubMed ID: 11589275 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]