These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 10880004)
1. Analysis of the elastic net model applied to the formation of ocular dominance and orientation columns. Goodhill GJ; Cimponeriu A Network; 2000 May; 11(2):153-68. PubMed ID: 10880004 [TBL] [Abstract][Full Text] [Related]
2. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex. Nakagama H; Tani T; Tanaka S Neurosci Res; 2006 Aug; 55(4):370-82. PubMed ID: 16780978 [TBL] [Abstract][Full Text] [Related]
3. The influence of restricted orientation rearing on map structure in primary visual cortex. Giacomantonio CE; Ibbotson MR; Goodhill GJ Neuroimage; 2010 Sep; 52(3):875-83. PubMed ID: 20035888 [TBL] [Abstract][Full Text] [Related]
4. The influence of neural activity and intracortical connectivity on the periodicity of ocular dominance stripes. Goodhill GJ Network; 1998 Aug; 9(3):419-32. PubMed ID: 9861999 [TBL] [Abstract][Full Text] [Related]
5. The coordinated mapping of visual space and response features in visual cortex. Yu H; Farley BJ; Jin DZ; Sur M Neuron; 2005 Jul; 47(2):267-80. PubMed ID: 16039568 [TBL] [Abstract][Full Text] [Related]
6. A developmental model of ocular dominance column formation on a growing cortex. Oster AM; Bressloff PC Bull Math Biol; 2006 Jan; 68(1):73-98. PubMed ID: 16794922 [TBL] [Abstract][Full Text] [Related]
7. Preservation of functional architecture in visual cortex of cats with experimentally induced hydrocephalus. Imamura K; Tanaka S; Ribot J; Kobayashi M; Yamamoto M; Nakadate K; Watanabe Y Eur J Neurosci; 2006 Apr; 23(8):2087-98. PubMed ID: 16630056 [TBL] [Abstract][Full Text] [Related]
8. Model-based analysis of excitatory lateral connections in the visual cortex. Buzás P; Kovács K; Ferecskó AS; Budd JM; Eysel UT; Kisvárday ZF J Comp Neurol; 2006 Dec; 499(6):861-81. PubMed ID: 17072837 [TBL] [Abstract][Full Text] [Related]
9. The temporal-spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation. Tong L; Xie Y; Yu H Neuroscience; 2016 Dec; 339():571-586. PubMed ID: 27746342 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous pattern formation and pinning in the primary visual cortex. Baker TI; Cowan JD J Physiol Paris; 2009; 103(1-2):52-68. PubMed ID: 19523514 [TBL] [Abstract][Full Text] [Related]
12. Emergence of orientation-selective inhibition in the primary visual cortex: a Bayes-Markov computational model. Shirazi MN Biol Cybern; 2004 Aug; 91(2):115-30. PubMed ID: 15340852 [TBL] [Abstract][Full Text] [Related]
13. Local networks in visual cortex and their influence on neuronal responses and dynamics. Schummers J; Mariño J; Sur M J Physiol Paris; 2004; 98(4-6):429-41. PubMed ID: 16274974 [TBL] [Abstract][Full Text] [Related]
14. A temporal frequency-dependent functional architecture in human V1 revealed by high-resolution fMRI. Sun P; Ueno K; Waggoner RA; Gardner JL; Tanaka K; Cheng K Nat Neurosci; 2007 Nov; 10(11):1404-6. PubMed ID: 17934459 [TBL] [Abstract][Full Text] [Related]
15. Roles of visual experience and intrinsic mechanism in the activity-dependent self-organization of orientation maps: theory and experiment. Tanaka S; Miyashita M; Ribot J Neural Netw; 2004; 17(8-9):1363-75. PubMed ID: 15555871 [TBL] [Abstract][Full Text] [Related]