These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 10880076)

  • 1. Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior.
    Burkoth AK; Burdick J; Anseth KS
    J Biomed Mater Res; 2000 Sep; 51(3):352-9. PubMed ID: 10880076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosslinked polyanhydrides for use in orthopedic applications: degradation behavior and mechanics.
    Muggli DS; Burkoth AK; Anseth KS
    J Biomed Mater Res; 1999 Aug; 46(2):271-8. PubMed ID: 10380006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and degradation characteristics of salicylic acid-derived poly(anhydride-esters).
    Erdmann L; Uhrich KE
    Biomaterials; 2000 Oct; 21(19):1941-6. PubMed ID: 10941915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyanhydrides. V. Branched polyanhydrides.
    Maniar M; Xie XD; Domb AJ
    Biomaterials; 1990 Nov; 11(9):690-4. PubMed ID: 2090304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of photocrosslinked polyanhydrides: in situ forming degradable networks.
    Burkoth AK; Anseth KS
    Biomaterials; 2000 Dec; 21(23):2395-404. PubMed ID: 11055287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photopolymerizable degradable polyanhydrides with osteocompatibility.
    Anseth KS; Shastri VR; Langer R
    Nat Biotechnol; 1999 Feb; 17(2):156-9. PubMed ID: 10052351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histocompatibility of photocrosslinked polyanhydrides: a novel in situ forming orthopaedic biomaterial.
    Poshusta AK; Burdick JA; Mortisen DJ; Padera RF; Ruehlman D; Yaszemski MJ; Anseth KS
    J Biomed Mater Res A; 2003 Jan; 64(1):62-9. PubMed ID: 12483697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and in vitro degradation of poly(octadecanoic anhydride).
    Dong AJ; Zhang JW; Jiang K; Deng LD
    J Mater Sci Mater Med; 2008 Jan; 19(1):39-46. PubMed ID: 17577635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photopolymers in orthopedics: characterization of novel crosslinked polyanhydrides.
    Young JS; Gonzales KD; Anseth KS
    Biomaterials; 2000 Jun; 21(11):1181-8. PubMed ID: 10817271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels.
    Goraltchouk A; Freier T; Shoichet MS
    Biomaterials; 2005 Dec; 26(36):7555-63. PubMed ID: 16005955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear fatty acid terminated polyanhydrides.
    Teomim D; Domb AJ
    Biomacromolecules; 2001; 2(1):37-44. PubMed ID: 11749153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of novel polyanhydrides with tailored erosion mechanisms.
    Torres MP; Vogel BM; Narasimhan B; Mallapragada SK
    J Biomed Mater Res A; 2006 Jan; 76(1):102-10. PubMed ID: 16138330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications.
    Davis KA; Burdick JA; Anseth KS
    Biomaterials; 2003 Jun; 24(14):2485-95. PubMed ID: 12695075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo and in vitro elimination of aliphatic polyanhydrides.
    Domb AJ; Nudelman R
    Biomaterials; 1995 Mar; 16(4):319-23. PubMed ID: 7772672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics.
    Leong KW; Brott BC; Langer R
    J Biomed Mater Res; 1985 Oct; 19(8):941-55. PubMed ID: 3880353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review: photopolymerizable and degradable biomaterials for tissue engineering applications.
    Ifkovits JL; Burdick JA
    Tissue Eng; 2007 Oct; 13(10):2369-85. PubMed ID: 17658993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable polymers. I. Synthesis of hydrolysis-sensitive poly[(organo)phosphazenes].
    Crommen JH; Schacht EH; Mense EH
    Biomaterials; 1992; 13(8):511-20. PubMed ID: 1633224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic biodegradable polymers for orthopaedic applications.
    Behravesh E; Yasko AW; Engel PS; Mikos AG
    Clin Orthop Relat Res; 1999 Oct; (367 Suppl):S118-29. PubMed ID: 10546641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled protein delivery from biodegradable tyrosine-containing poly(anhydride-co-imide) microspheres.
    Chiba M; Hanes J; Langer R
    Biomaterials; 1997 Jul; 18(13):893-901. PubMed ID: 9199758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.