These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10880088)

  • 1. Fatigue characterization of a hydroxyapatite-reinforced polyethylene composite. I. Uniaxial fatigue.
    That PT; Tanner KE; Bonfield W
    J Biomed Mater Res; 2000 Sep; 51(3):453-60. PubMed ID: 10880088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue characterization of a hydroxyapatite-reinforced polyethylene composite. II. Biaxial fatigue.
    Ton That PT; Tanner KE; Bonfield W
    J Biomed Mater Res; 2000 Sep; 51(3):461-8. PubMed ID: 10880089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of particle morphology and polyethylene molecular weight on the fracture toughness of hydroxyapatite reinforced polyethylene composite.
    Eniwumide JO; Joseph R; Tanner KE
    J Mater Sci Mater Med; 2004 Oct; 15(10):1147-52. PubMed ID: 15516877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the reinforcement morphology on the fatigue properties of hydroxyapatite reinforced polymers.
    Kane RJ; Converse GL; Roeder RK
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):261-8. PubMed ID: 19578474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a degradable composite for orthopaedic use: mechanical evaluation of an hydroxyapatite-polyhydroxybutyrate composite material.
    Boeree NR; Dove J; Cooper JJ; Knowles J; Hastings GW
    Biomaterials; 1993 Aug; 14(10):793-6. PubMed ID: 8218731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro biomechanical comparison of hydroxyapatite coated and uncoated ao cortical bone screws for a limited contact: dynamic compression plate fixation of osteotomized equine 3rd metacarpal bones.
    Durham ME; Sod GA; Riggs LM; Mitchell CF
    Vet Surg; 2015 Feb; 44(2):206-13. PubMed ID: 25132492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites.
    Roeder RK; Sproul MM; Turner CH
    J Biomed Mater Res A; 2003 Dec; 67(3):801-12. PubMed ID: 14613228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyapatite-reinforced polyethylene as an analogous material for bone replacement.
    Bonfield W
    Ann N Y Acad Sci; 1988; 523():173-7. PubMed ID: 2837942
    [No Abstract]   [Full Text] [Related]  

  • 10. Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants.
    Abu Bakar MS; Cheng MH; Tang SM; Yu SC; Liao K; Tan CT; Khor KA; Cheang P
    Biomaterials; 2003 Jun; 24(13):2245-50. PubMed ID: 12699660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of morphological features and surface area of hydroxyapatite on the fatigue behavior of hydroxyapatite-polyethylene composites.
    Joseph R; Tanner KE
    Biomacromolecules; 2005; 6(2):1021-6. PubMed ID: 15762673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical characterization of brushite and hydroxyapatite cements.
    Charrière E; Terrazzoni S; Pittet C; Mordasini PH; Dutoit M; Lemaître J; Zysset PH
    Biomaterials; 2001 Nov; 22(21):2937-45. PubMed ID: 11561900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyapatite reinforced polyethylene--a mechanically compatible implant material for bone replacement.
    Bonfield W; Grynpas MD; Tully AE; Bowman J; Abram J
    Biomaterials; 1981 Jul; 2(3):185-6. PubMed ID: 6268209
    [No Abstract]   [Full Text] [Related]  

  • 15. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.
    Bagheri ZS; El Sawi I; Bougherara H; Zdero R
    J Mech Behav Biomed Mater; 2014 Jul; 35():27-38. PubMed ID: 24918250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue performance of ultra-high-molecular-weight polyethylene: effect of gamma radiation sterilization.
    Sauer WL; Weaver KD; Beals NB
    Biomaterials; 1996 Oct; 17(20):1929-35. PubMed ID: 8894083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a degradable composite for orthopaedic use: in vivo biomechanical and histological evaluation of two bioactive degradable composites based on the polyhydroxybutyrate polymer.
    Knowles JC; Hastings GW; Ohta H; Niwa S; Boeree N
    Biomaterials; 1992; 13(8):491-6. PubMed ID: 1321677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-component fiber-reinforced PHEMA-based hydrogel/HAPEX™ device for customized intervertebral disc prosthesis.
    Gloria A; De Santis R; Ambrosio L; Causa F; Tanner KE
    J Biomater Appl; 2011 May; 25(8):795-810. PubMed ID: 20511384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing and mechanical properties of HA/UHMWPE nanocomposites.
    Fang L; Leng Y; Gao P
    Biomaterials; 2006 Jul; 27(20):3701-7. PubMed ID: 16564570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings.
    Zheng X; Huang M; Ding C
    Biomaterials; 2000 Apr; 21(8):841-9. PubMed ID: 10721753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.