BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 10880095)

  • 1. Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth.
    Yeni YN; Norman TL
    J Biomed Mater Res; 2000 Sep; 51(3):504-9. PubMed ID: 10880095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural heterogeneity and the fracture toughness of bone.
    Phelps JB; Hubbard GB; Wang X; Agrawal CM
    J Biomed Mater Res; 2000 Sep; 51(4):735-41. PubMed ID: 10880123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated experimental-computational framework to assess the influence of microstructure and material properties on fracture toughness in clinical specimens of human femoral cortical bone.
    Demirtas A; Taylor EA; Gludovatz B; Ritchie RO; Donnelly E; Ural A
    J Mech Behav Biomed Mater; 2023 Sep; 145():106034. PubMed ID: 37494816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone.
    Granke M; Makowski AJ; Uppuganti S; Nyman JS
    J Biomech; 2016 Sep; 49(13):2748-2755. PubMed ID: 27344202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crack propagation in cortical bone is affected by the characteristics of the cement line: a parameter study using an XFEM interface damage model.
    Gustafsson A; Wallin M; Khayyeri H; Isaksson H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1247-1261. PubMed ID: 30963356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of aging on the transverse toughness of human cortical bone: evaluation by R-curves.
    Koester KJ; Barth HD; Ritchie RO
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1504-13. PubMed ID: 21783160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropy of age-related toughness loss in human cortical bone: a finite element study.
    Ural A; Vashishth D
    J Biomech; 2007; 40(7):1606-14. PubMed ID: 17054962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed X-ray visualization of dynamic crack initiation and propagation in bone.
    Zhai X; Guo Z; Gao J; Kedir N; Nie Y; Claus B; Sun T; Xiao X; Fezzaa K; Chen WW
    Acta Biomater; 2019 May; 90():278-286. PubMed ID: 30926579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of microstructure and microcrack growth in cortical bone: a finite element study.
    Mischinski S; Ural A
    Comput Methods Biomech Biomed Engin; 2013; 16(1):81-94. PubMed ID: 21970670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Novel Clinical Surrogates to Assess Human Bone Fracture Toughness.
    Granke M; Makowski AJ; Uppuganti S; Does MD; Nyman JS
    J Bone Miner Res; 2015 Jul; 30(7):1290-300. PubMed ID: 25639628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM.
    Gustafsson A; Khayyeri H; Wallin M; Isaksson H
    J Mech Behav Biomed Mater; 2019 Feb; 90():556-565. PubMed ID: 30472565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical study of dehydration induced fracture toughness degradation in human cortical bone.
    Shin M; Martens PJ; Siegmund T; Kruzic JJ; Gludovatz B
    J Mech Behav Biomed Mater; 2024 May; 153():106468. PubMed ID: 38493561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related properties at the microscale affect crack propagation in cortical bone.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2019 Oct; 95():109326. PubMed ID: 31526587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromechanics of osteonal cortical bone fracture.
    Guo XE; Liang LC; Goldstein SA
    J Biomech Eng; 1998 Feb; 120(1):112-7. PubMed ID: 9675689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture toughness of human bone under tension.
    Norman TL; Vashishth D; Burr DB
    J Biomech; 1995 Mar; 28(3):309-20. PubMed ID: 7730389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties.
    Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh MH
    J Biomech; 2007; 40(12):2788-95. PubMed ID: 17376454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone tissue aging affects mineralization of cement lines.
    Milovanovic P; Vom Scheidt A; Mletzko K; Sarau G; Püschel K; Djuric M; Amling M; Christiansen S; Busse B
    Bone; 2018 May; 110():187-193. PubMed ID: 29427789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates.
    Zimmermann EA; Gludovatz B; Schaible E; Busse B; Ritchie RO
    Biomaterials; 2014 Jul; 35(21):5472-81. PubMed ID: 24731707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling.
    Demirtas A; Curran E; Ural A
    Bone; 2016 Oct; 91():92-101. PubMed ID: 27451083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.