These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 10880279)
1. Re-orientation and faster, directed migration of lens epithelial cells in a physiological electric field. Wang E; Zhao M; Forrester JV; MCCaig CD Exp Eye Res; 2000 Jul; 71(1):91-8. PubMed ID: 10880279 [TBL] [Abstract][Full Text] [Related]
2. Bi-directional migration of lens epithelial cells in a physiological electrical field. Wang E; Zhao M; Forrester JV; McCaig CD Exp Eye Res; 2003 Jan; 76(1):29-37. PubMed ID: 12589773 [TBL] [Abstract][Full Text] [Related]
3. Alignment of corneal and lens epithelial cells by co-operative effects of substratum topography and DC electric fields. Rajnicek AM; Foubister LE; McCaig CD Biomaterials; 2008 May; 29(13):2082-95. PubMed ID: 18281089 [TBL] [Abstract][Full Text] [Related]
4. Directed migration of corneal epithelial sheets in physiological electric fields. Zhao M; Agius-Fernandez A; Forrester JV; McCaig CD Invest Ophthalmol Vis Sci; 1996 Dec; 37(13):2548-58. PubMed ID: 8977469 [TBL] [Abstract][Full Text] [Related]
5. Interaction with collagen IV protects lens epithelial cells from Fas-dependent apoptosis by stimulating the production of soluble survival factors. Futter CE; Crowston JG; Allan BD Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3256-62. PubMed ID: 16123427 [TBL] [Abstract][Full Text] [Related]
6. Electric fields and MAP kinase signaling can regulate early wound healing in lens epithelium. Wang E; Zhao M; Forrester JV; McCaig CD Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):244-9. PubMed ID: 12506081 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of lens epithelial cell migration in vivo at the haptic-optic junction of a one-piece hydrophobic acrylic intraocular lens. Nixon DR; Apple DJ Am J Ophthalmol; 2006 Oct; 142(4):557-62. PubMed ID: 17011844 [TBL] [Abstract][Full Text] [Related]
8. Effect of surface coating an acrylic intraocular lens with poly(2-methacryloyloxyethyl phosphorylcholine) polymer on lens epithelial cell line behavior. Okajima Y; Saika S; Sawa M J Cataract Refract Surg; 2006 Apr; 32(4):666-71. PubMed ID: 16698492 [TBL] [Abstract][Full Text] [Related]
9. Human corneal epithelial cells reorient and migrate cathodally in a small applied electric field. Zhao M; McCaig CD; Agius-Fernandez A; Forrester JV; Araki-Sasaki K Curr Eye Res; 1997 Oct; 16(10):973-84. PubMed ID: 9330848 [TBL] [Abstract][Full Text] [Related]
10. An in vitro model of posterior capsular opacity: SPARC and TGF-beta2 minimize epithelial-to-mesenchymal transition in lens epithelium. Gotoh N; Perdue NR; Matsushima H; Sage EH; Yan Q; Clark JI Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4679-87. PubMed ID: 17898292 [TBL] [Abstract][Full Text] [Related]
11. Three-hundred-sixty degree barrier effect of a square-edged and an enhanced-edge intraocular lens on centripetal lens epithelial cell migration Two-year results. Vyas AV; Narendran R; Bacon PJ; Apple DJ J Cataract Refract Surg; 2007 Jan; 33(1):81-7. PubMed ID: 17189798 [TBL] [Abstract][Full Text] [Related]
12. Lithium stabilizes the polarized lens epithelial phenotype and inhibits proliferation, migration, and epithelial mesenchymal transition. Stump RJ; Lovicu FJ; Ang SL; Pandey SK; McAvoy JW J Pathol; 2006 Oct; 210(2):249-57. PubMed ID: 16924593 [TBL] [Abstract][Full Text] [Related]
13. Alkylphosphocholines as a potential pharmacologic prophylaxis for posterior capsule opacification. Eibl KH; Liegl R; Kernt M; Priglinger S; Kampik A J Cataract Refract Surg; 2009 May; 35(5):900-5. PubMed ID: 19393891 [TBL] [Abstract][Full Text] [Related]
14. Hepatocyte growth factor induces proliferation of lens epithelial cells through activation of ERK1/2 and JNK/SAPK. Choi J; Park SY; Joo CK Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2696-704. PubMed ID: 15277494 [TBL] [Abstract][Full Text] [Related]
15. Octreotide inhibits growth factor-induced and basal proliferation of lens epithelial cells in vitro. Baldysiak-Figiel A; Jong-Hesse YD; Lang GK; Lang GE J Cataract Refract Surg; 2005 May; 31(5):1059-64. PubMed ID: 15975478 [TBL] [Abstract][Full Text] [Related]
16. The role of nuclear factor kappa B in lens epithelial cell proliferation using a capsular bag model. Lee SJ; Bae S; Seomun Y; Son MJ; Joo CK Ophthalmic Res; 2008; 40(5):273-8. PubMed ID: 18437038 [TBL] [Abstract][Full Text] [Related]
17. Morphology and organization of posterior fiber ends during migration. Al-Ghoul KJ; Kuszak JR; Lu JY; Owens MJ Mol Vis; 2003 Apr; 9():119-28. PubMed ID: 12707642 [TBL] [Abstract][Full Text] [Related]
18. [Directed migration and morphological changes of cultured trophoblast cells in small electric fields]. Luo XF; Huang Y; Fan P; Peng B; Liu R; Bai H Sichuan Da Xue Xue Bao Yi Xue Ban; 2010 Sep; 41(5):771-4, 802. PubMed ID: 21302438 [TBL] [Abstract][Full Text] [Related]
19. Effects of calcium on human lens epithelial cells in vitro. Matsushima H; Mukai K; Yoshida S; Obara Y Jpn J Ophthalmol; 2004; 48(2):97-100. PubMed ID: 15060788 [TBL] [Abstract][Full Text] [Related]
20. DC electric fields induce rapid directional migration in cultured human corneal epithelial cells. Farboud B; Nuccitelli R; Schwab IR; Isseroff RR Exp Eye Res; 2000 May; 70(5):667-73. PubMed ID: 10870525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]