These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10880807)

  • 1. Quantification of intracranial contribution to rheoencephalography by a numerical model of the head.
    Pérez JJ; Guijarro E; Barcia JA
    Clin Neurophysiol; 2000 Jul; 111(7):1306-14. PubMed ID: 10880807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the scalp thickness on the intracranial contribution to rheoencephalography.
    Pérez JJ; Guijarro E; Barcia JA
    Phys Med Biol; 2004 Sep; 49(18):4383-94. PubMed ID: 15509072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. To what extent is the bipolar rheoencephalographic signal contaminated by scalp blood flow? A clinical study to quantify its extra and non-extracranial components.
    Perez JJ
    Biomed Eng Online; 2014 Sep; 13():131. PubMed ID: 25192886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal pattern of the extracranial component of the rheoencephalographic signal.
    Pérez JJ; Guijarro E; Sancho J
    Physiol Meas; 2005 Dec; 26(6):925-38. PubMed ID: 16311442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of the intracranial component from the rheoencephalographic signal: a new approach.
    Perez JJ; Guijarro E; Sancho J; Navarre A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6064-7. PubMed ID: 17945931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of rheoencephalographic measurements to spatial brain electrical conductivity.
    Guijarro E; Perez JJ; Berjano E; Ortiz P
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6088-91. PubMed ID: 17946355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebrovascular reactivity: rat studies in rheoencephalography.
    Bodo M; Pearce FJ; Armonda RA
    Physiol Meas; 2004 Dec; 25(6):1371-84. PubMed ID: 15712716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the intracranial rheoencephalogram at lower limit of cerebral blood flow autoregulation.
    Bodo M; Pearce FJ; Baranyi L; Armonda RA
    Physiol Meas; 2005 Apr; 26(2):S1-17. PubMed ID: 15798222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of cerebrospinal fluid to rheoencephalographic waveforms during hypoxic and +Gz stress.
    Shender BS; Dubin SE
    Aviat Space Environ Med; 1994 Jun; 65(6):510-7. PubMed ID: 8074623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous use of rheoencephalography and electroencephalography for the monitoring of cerebral function.
    Montgomery LD; Gleason CR
    Aviat Space Environ Med; 1992 Apr; 63(4):314-21. PubMed ID: 1319139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RBF network based on artificial immune algorithm for regional head conductivity estimation.
    Dong G; Zhou Y; Qiu Z; Yan W
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2470-3. PubMed ID: 17945717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of composite electrode-tissue impedance.
    Robinson RL; Davidson JL; Wright P; Pomfrett CJ; McCann H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1171-4. PubMed ID: 19162873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The determination of cerebral hemodynamics in rats by means of tetrapolar impedance rheoencephalography].
    Protsenko VA; Kozinets IIu; Kharchenko VZ
    Patol Fiziol Eksp Ter; 1991; (3):55-6. PubMed ID: 1923622
    [No Abstract]   [Full Text] [Related]  

  • 14. Evaluation of consistency among different electrical impedance indices of relative cerebral blood flow in normal resting individuals.
    Jevning R; Fernando G; Wilson AF
    J Biomed Eng; 1989 Jan; 11(1):53-6. PubMed ID: 2927100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of electrode size on the contributions of intracranial and extracranial blood flow to the cerebral electrical impedance plethysmogram.
    Weindling AM; Murdoch N; Rolfe P
    Med Biol Eng Comput; 1982 Sep; 20(5):545-9. PubMed ID: 7176711
    [No Abstract]   [Full Text] [Related]  

  • 16. [Clinico-physiologic study of the adequacy of using rheoencephalography to study cerebrovascular circulation in man].
    Semeniutin VB; Eremeev VS; Teplov SI
    Fiziol Zh SSSR Im I M Sechenova; 1980 Apr; 66(4):543-8. PubMed ID: 7389942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quasi-power theorem for bulk conductors: comments on rheoencephalography.
    Hatsell CP
    IEEE Trans Biomed Eng; 1991 Jul; 38(7):665-9. PubMed ID: 1879859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of brain electrical impedance: animal studies in rheoencephalography.
    Bodo M; Pearce FJ; Montgomery LD; Rosenthal M; Kubinyi G; Thuroczy G; Braisted J; Forcino D; Morrissette C; Nagy I
    Aviat Space Environ Med; 2003 May; 74(5):506-11. PubMed ID: 12751577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Differences in basic rheoencephalographic studies in healthy persons depending on age].
    Pryszmont M
    Neurol Neurochir Pol; 1979; 13(3):245-9. PubMed ID: 471156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of computerized rheoencephalography in the assessment of normal pressure hydrocephalus.
    Traczewski W; Moskala M; Kruk D; Gościński I; Szwabowska D; Polak J; Wielgosz K
    J Neurotrauma; 2005 Jul; 22(7):836-43. PubMed ID: 16004585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.