BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 10880966)

  • 21. Regulation of putative fatty acid transporters and Acyl-CoA synthetase in liver and adipose tissue in ob/ob mice.
    Memon RA; Fuller J; Moser AH; Smith PJ; Grunfeld C; Feingold KR
    Diabetes; 1999 Jan; 48(1):121-7. PubMed ID: 9892232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and biochemical characterization of five long-chain acyl-coenzyme A synthetases from the diatom Phaeodactylum tricornutum.
    Guo X; Jiang M; Wan X; Hu C; Gong Y
    Plant Physiol Biochem; 2014 Jan; 74():33-41. PubMed ID: 24257028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of acyl-CoA synthetase genes in n-alkane assimilation and fatty acid utilization in yeast Yarrowia lipolytica.
    Tenagy ; Park JS; Iwama R; Kobayashi S; Ohta A; Horiuchi H; Fukuda R
    FEMS Yeast Res; 2015 Jun; 15(4):fov031. PubMed ID: 26019148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase.
    Coe NR; Smith AJ; Frohnert BI; Watkins PA; Bernlohr DA
    J Biol Chem; 1999 Dec; 274(51):36300-4. PubMed ID: 10593920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localization of adipocyte long-chain fatty acyl-CoA synthetase at the plasma membrane.
    Gargiulo CE; Stuhlsatz-Krouper SM; Schaffer JE
    J Lipid Res; 1999 May; 40(5):881-92. PubMed ID: 10224157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Substitution of alanine for serine 250 in the murine fatty acid transport protein inhibits long chain fatty acid transport.
    Stuhlsatz-Krouper SM; Bennett NE; Schaffer JE
    J Biol Chem; 1998 Oct; 273(44):28642-50. PubMed ID: 9786857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation.
    Black PN; DiRusso CC
    Biochim Biophys Acta; 2007 Mar; 1771(3):286-98. PubMed ID: 16798075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Candida albicans fatty acyl-CoA synthetase, CaFaa4p, is involved in the uptake of exogenous long-chain fatty acids and cell activity in the biofilm.
    Tejima K; Ishiai M; Murayama SO; Iwatani S; Kajiwara S
    Curr Genet; 2018 Apr; 64(2):429-441. PubMed ID: 28942495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The fatty acid transport protein (FATP) family: very long chain acyl-CoA synthetases or solute carriers?
    Jia Z; Pei Z; Maiguel D; Toomer CJ; Watkins PA
    J Mol Neurosci; 2007 Sep; 33(1):25-31. PubMed ID: 17901542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acyl-CoA synthetases, Aal4 and Aal7, are involved in the utilization of exogenous fatty acids in Yarrowia lipolytica.
    Tenagy ; Iwama R; Kobayashi S; Shiwa Y; Yoshikawa H; Horiuchi H; Fukuda R; Kajiwara S
    J Gen Appl Microbiol; 2021 Apr; 67(1):9-14. PubMed ID: 33100277
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence that acyl coenzyme A synthetase activity is required for repression of yeast acetyl coenzyme A carboxylase by exogenous fatty acids.
    Kamiryo T; Parthasarathy S; Numa S
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):386-90. PubMed ID: 1754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human very long-chain acyl-CoA synthetase and two human homologs: initial characterization and relationship to fatty acid transport protein.
    Watkins PA; Pevsner J; Steinberg SJ
    Prostaglandins Leukot Essent Fatty Acids; 1999; 60(5-6):323-8. PubMed ID: 10471116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complementation of Saccharomyces cerevisiae strains containing fatty acid activation gene (FAA) deletions with a mammalian acyl-CoA synthetase.
    Knoll LJ; Johnson DR; Gordon JI
    J Biol Chem; 1995 May; 270(18):10861-7. PubMed ID: 7738025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular cloning of fatty acid-transport protein cDNA from rat.
    Schaap FG; Hamers L; Van der Vusse GJ; Glatz JF
    Biochim Biophys Acta; 1997 Oct; 1354(1):29-34. PubMed ID: 9375787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular aspects of fatty acid transport: mutations in the IYTSGTTGXPK motif impair fatty acid transport protein function.
    Stuhlsatz-Krouper SM; Bennett NE; Schaffer JE
    Prostaglandins Leukot Essent Fatty Acids; 1999; 60(5-6):285-9. PubMed ID: 10471110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids.
    Stremmel W; Pohl L; Ring A; Herrmann T
    Lipids; 2001 Sep; 36(9):981-9. PubMed ID: 11724471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Very long-chain acyl-CoA synthetases. Human "bubblegum" represents a new family of proteins capable of activating very long-chain fatty acids.
    Steinberg SJ; Morgenthaler J; Heinzer AK; Smith KD; Watkins PA
    J Biol Chem; 2000 Nov; 275(45):35162-9. PubMed ID: 10954726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energetics underlying the process of long-chain fatty acid transport.
    Azizan A; Sherin D; DiRusso CC; Black PN
    Arch Biochem Biophys; 1999 May; 365(2):299-306. PubMed ID: 10328825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the Acyl-CoA synthetase activity of purified murine fatty acid transport protein 1.
    Hall AM; Smith AJ; Bernlohr DA
    J Biol Chem; 2003 Oct; 278(44):43008-13. PubMed ID: 12937175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the murine fatty acid transport protein gene and its insulin response sequence.
    Hui TY; Frohnert BI; Smith AJ; Schaffer JE; Bernlohr DA
    J Biol Chem; 1998 Oct; 273(42):27420-9. PubMed ID: 9765271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.