BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10881751)

  • 1. Dominant role of the C-terminal domain in the binding of apolipoprotein(a) to the protein core of proteoglycans and other members of the vascular matrix.
    Scanu AM; Edelstein C; Klezovitch O
    Trends Cardiovasc Med; 1999 Oct; 9(7):196-200. PubMed ID: 10881751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Domains of apolipoprotein E involved in the binding to the protein core of biglycan of the vascular extracellular matrix: potential relationship between retention and anti-atherogenic properties of this apolipoprotein.
    Klezovitch O; Scanu AM
    Trends Cardiovasc Med; 2001 Oct; 11(7):263-8. PubMed ID: 11709279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decorin binds fibrinogen in a Zn2+-dependent interaction.
    Dugan TA; Yang VW; McQuillan DJ; Höök M
    J Biol Chem; 2003 Apr; 278(16):13655-62. PubMed ID: 12582160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subendothelial retention of lipoprotein (a). Evidence that reduced heparan sulfate promotes lipoprotein binding to subendothelial matrix.
    Pillarisetti S; Paka L; Obunike JC; Berglund L; Goldberg IJ
    J Clin Invest; 1997 Aug; 100(4):867-74. PubMed ID: 9259586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial cells and atherosclerosis: lipoprotein metabolism, matrix interactions, and monocyte recruitment.
    Saxena U; Goldberg IJ
    Curr Opin Lipidol; 1994 Oct; 5(5):316-22. PubMed ID: 7858905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of extracellular retention of low density lipoproteins in atherosclerosis.
    Borén J; Gustafsson M; Skålén K; Flood C; Innerarity TL
    Curr Opin Lipidol; 2000 Oct; 11(5):451-6. PubMed ID: 11048887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipoprotein modulation of subendothelial heparan sulfate proteoglycans (perlecan) and atherogenicity.
    Pillarisetti S
    Trends Cardiovasc Med; 2000 Feb; 10(2):60-5. PubMed ID: 11150731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of native and modified low-density lipoproteins with extracellular matrix.
    Chait A; Wight TN
    Curr Opin Lipidol; 2000 Oct; 11(5):457-63. PubMed ID: 11048888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The subendothelial extracellular matrix modulates NF-kappaB activation by flow: a potential role in atherosclerosis.
    Orr AW; Sanders JM; Bevard M; Coleman E; Sarembock IJ; Schwartz MA
    J Cell Biol; 2005 Apr; 169(1):191-202. PubMed ID: 15809308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural determinants in the C-terminal domain of apolipoprotein E mediating binding to the protein core of human aortic biglycan.
    Klezovitch O; Formato M; Cherchi GM; Weisgraber KH; Scanu AM
    J Biol Chem; 2000 Jun; 275(25):18913-8. PubMed ID: 10751422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biglycan, a vascular proteoglycan, binds differently to HDL2 and HDL3: role of apoE.
    Olin KL; Potter-Perigo S; Barrett PH; Wight TN; Chait A
    Arterioscler Thromb Vasc Biol; 2001 Jan; 21(1):129-35. PubMed ID: 11145944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipoprotein lipase greatly enhances the retention of lipoprotein(a) to endothelial cell-matrix.
    Auerbach BJ; Cain W; Ansong M; Newton RS; Saxena U; Bisgaier CL
    Atherosclerosis; 1999 Jan; 142(1):89-96. PubMed ID: 9920509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of lipoprotein retention by the extracellular matrix.
    Gustafsson M; Borén J
    Curr Opin Lipidol; 2004 Oct; 15(5):505-14. PubMed ID: 15361785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipoprotein-matrix interactions in macrovascular disease in diabetes.
    Tannock LR; Chait A
    Front Biosci; 2004 May; 9():1728-42. PubMed ID: 14977582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct interaction of the extracellular matrix protein DANCE with apolipoprotein(a) mediated by the kringle IV-type 2 domain.
    Kapetanopoulos A; Fresser F; Millonig G; Shaul Y; Baier G; Utermann G
    Mol Genet Genomics; 2002 Jun; 267(4):440-6. PubMed ID: 12111551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of recombinant apolipoprotein(a) to extracellular matrix proteins.
    van der Hoek YY; Sangrar W; Côté GP; Kastelein JJ; Koschinsky ML
    Arterioscler Thromb; 1994 Nov; 14(11):1792-8. PubMed ID: 7947605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The heparin III-binding domain of fibronectin (III4-5 repeats) binds to fibronectin and inhibits fibronectin matrix assembly.
    Maqueda A; Moyano JV; Hernández Del Cerro M; Peters DM; Garcia-Pardo A
    Matrix Biol; 2007 Oct; 26(8):642-51. PubMed ID: 17611093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basolateral distribution of fibronectin matrix assembly sites on vascular endothelial monolayers is regulated by substratum fibronectin.
    Kowalczyk AP; McKeown-Longo PJ
    J Cell Physiol; 1992 Jul; 152(1):126-34. PubMed ID: 1377697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding and degradation of proteoglycans by cultured arterial smooth muscle cells. II. Binding sites of proteoglycans on the cell surface.
    Völker W; Schmidt A; Buddecke E; Themann H; Robenek H
    Eur J Cell Biol; 1985 Jan; 36(1):58-65. PubMed ID: 3979402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel role for the integrin-binding III-10 module in fibronectin matrix assembly.
    Hocking DC; Smith RK; McKeown-Longo PJ
    J Cell Biol; 1996 Apr; 133(2):431-44. PubMed ID: 8609174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.