These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 10881814)
1. The effect of sizing on the hydrodynamic parameters of the Medtronic freestyle valve in vitro. Nagy ZL; Fisher J; Walker PG; Watterson KG Ann Thorac Surg; 2000 May; 69(5):1408-13. PubMed ID: 10881814 [TBL] [Abstract][Full Text] [Related]
2. The effect of sizing on the in vitro hydrodynamic characteristics and leaflet motion of the Toronto SPV stentless valve. Nagy ZL; Fisher J; Walker PG; Watterson KG J Thorac Cardiovasc Surg; 1999 Jan; 117(1):92-8. PubMed ID: 9869761 [TBL] [Abstract][Full Text] [Related]
4. The in vitro hydrodynamic characteristics of the porcine pulmonary valve and root with regard to the ross procedure. Nagy ZL; Fisher J; Walker PG; Watterson KG J Thorac Cardiovasc Surg; 2000 Aug; 120(2):284-9. PubMed ID: 10917944 [TBL] [Abstract][Full Text] [Related]
5. The influence of size mismatch on the hemodynamic performance of the pulmonary autograft in vitro. Nagy ZL; Fisher J; Walker PG; Watterson KG Eur J Cardiothorac Surg; 1999 Mar; 15(3):294-301. PubMed ID: 10333026 [TBL] [Abstract][Full Text] [Related]
6. The influence of free hand suturing technique and zero pressure fixation on the hydrodynamic function of aortic root and aortic valve leaflets. Revanna P; Fisher J; Watterson KG Eur J Cardiothorac Surg; 1997 Feb; 11(2):280-6. PubMed ID: 9080156 [TBL] [Abstract][Full Text] [Related]
7. The influence of sizing and method of fixation on the hydrodynamic function of stentless, free-hand inserted porcine bioprosthesis: an in vitro study. Revanna P; Fisher J; Watterson KG J Heart Valve Dis; 1997 Jul; 6(4):433-8. PubMed ID: 9263877 [TBL] [Abstract][Full Text] [Related]
8. Hydrodynamic function of the second-generation mitroflow pericardial bioprosthesis. Jennings LM; El-Gatit A; Nagy ZL; Fisher J; Walker PG; Watterson KG Ann Thorac Surg; 2002 Jul; 74(1):63-8. PubMed ID: 12118805 [TBL] [Abstract][Full Text] [Related]
9. The influence of ventricular input impedance on the hydrodynamic performance of bioprosthetic aortic roots in vitro. Jennings LM; Butterfield M; Walker PG; Watterson KG; Fisher J J Heart Valve Dis; 2001 Mar; 10(2):269-75. PubMed ID: 11297215 [TBL] [Abstract][Full Text] [Related]
10. [Hemodynamic performance of newly developed composite stentless porcine aortic valve: in vitro testing and in vivo experiment with sheep]. Song GM; Zhou JY; Hu SS; Cui JW; Song YH; Tang Y; Zhang Y; Jiang H; Yuan WM; Song XY Zhonghua Yi Xue Za Zhi; 2008 Jul; 88(29):2059-63. PubMed ID: 19080436 [TBL] [Abstract][Full Text] [Related]
11. The hydrodynamic function and leaflet dynamics of aortic and pulmonary roots and valves: an in vitro study. Weerasena N; Lockie KJ; Butterfield M; Fisher J; Kearney JN; Davies GA Eur J Cardiothorac Surg; 1992; 6(7):350-6. PubMed ID: 1497926 [TBL] [Abstract][Full Text] [Related]
12. Stentless aortic valve replacement with Freestyle or Toronto SPV: an early comparison. Riley RD; Hammon JW; Adair SM; Cordell AR; Kon ND Ann Thorac Surg; 2000 Jul; 70(1):48-51; discussion 51-2. PubMed ID: 10921681 [TBL] [Abstract][Full Text] [Related]
13. Biomechanics of glutaraldehyde-treated porcine aortic roots and valves. An investigation of the effect of predilation of the elastic aortic root. Lockie KJ; Fisher J; Juster NP; Davies GA; Watterson K J Thorac Cardiovasc Surg; 1994 Dec; 108(6):1037-42. PubMed ID: 7983873 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Effective Orifice Areas of Mitral Prosthetic Heart Valves: An In-Vitro Study. Evin M; Magne J; Grieve SM; Rieu R; Pibarot P J Heart Valve Dis; 2017 Nov; 26(6):677-687. PubMed ID: 30207118 [TBL] [Abstract][Full Text] [Related]