BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 10882078)

  • 1. Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus.
    Gribnau J; Diderich K; Pruzina S; Calzolari R; Fraser P
    Mol Cell; 2000 Feb; 5(2):377-86. PubMed ID: 10882078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmentally dynamic histone acetylation pattern of a tissue-specific chromatin domain.
    Forsberg EC; Downs KM; Christensen HM; Im H; Nuzzi PA; Bresnick EH
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14494-9. PubMed ID: 11121052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly restricted localization of RNA polymerase II within a locus control region of a tissue-specific chromatin domain.
    Johnson KD; Grass JA; Park C; Im H; Choi K; Bresnick EH
    Mol Cell Biol; 2003 Sep; 23(18):6484-93. PubMed ID: 12944475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental stage differences in chromatin subdomains of the beta-globin locus.
    Kim A; Dean A
    Proc Natl Acad Sci U S A; 2004 May; 101(18):7028-33. PubMed ID: 15105444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-globin intergenic transcription and histone acetylation dependent on an enhancer.
    Kim A; Zhao H; Ifrim I; Dean A
    Mol Cell Biol; 2007 Apr; 27(8):2980-6. PubMed ID: 17283048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recruitment of transcription complexes to the beta-globin locus control region and transcription of hypersensitive site 3 prior to erythroid differentiation of murine embryonic stem cells.
    Levings PP; Zhou Z; Vieira KF; Crusselle-Davis VJ; Bungert J
    FEBS J; 2006 Feb; 273(4):746-55. PubMed ID: 16441661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic and additive properties of the beta-globin locus control region (LCR) revealed by 5'HS3 deletion mutations: implication for LCR chromatin architecture.
    Fang X; Sun J; Xiang P; Yu M; Navas PA; Peterson KR; Stamatoyannopoulos G; Li Q
    Mol Cell Biol; 2005 Aug; 25(16):7033-41. PubMed ID: 16055715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus.
    Schübeler D; Francastel C; Cimbora DM; Reik A; Martin DI; Groudine M
    Genes Dev; 2000 Apr; 14(8):940-50. PubMed ID: 10783166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A major role for the TATA box in recruitment of chromatin modifying complexes to a globin gene promoter.
    Gui CY; Dean A
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):7009-14. PubMed ID: 12773626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin structure and transcriptional regulation of the beta-globin locus.
    Fu XH; Liu DP; Liang CC
    Exp Cell Res; 2002 Aug; 278(1):1-11. PubMed ID: 12126952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The beta -globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation.
    Sawado T; Halow J; Bender MA; Groudine M
    Genes Dev; 2003 Apr; 17(8):1009-18. PubMed ID: 12672691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of GATA-1 in a non-hematopoietic cell line induces beta-globin locus control region chromatin structure remodeling and an erythroid pattern of gene expression.
    Layon ME; Ackley CJ; West RJ; Lowrey CH
    J Mol Biol; 2007 Feb; 366(3):737-44. PubMed ID: 17196618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination of PIC assembly and chromatin remodeling during differentiation-induced gene activation.
    Soutoglou E; Talianidis I
    Science; 2002 Mar; 295(5561):1901-4. PubMed ID: 11884757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone acetylation contributes to chromatin looping between the locus control region and globin gene by influencing hypersensitive site formation.
    Kim YW; Kim A
    Biochim Biophys Acta; 2013 Sep; 1829(9):963-9. PubMed ID: 23607989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-globin gene switching and DNase I sensitivity of the endogenous beta-globin locus in mice do not require the locus control region.
    Bender MA; Bulger M; Close J; Groudine M
    Mol Cell; 2000 Feb; 5(2):387-93. PubMed ID: 10882079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world.
    Forsberg EC; Bresnick EH
    Bioessays; 2001 Sep; 23(9):820-30. PubMed ID: 11536294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin remodeling and transcriptional regulation.
    Luo RX; Dean DC
    J Natl Cancer Inst; 1999 Aug; 91(15):1288-94. PubMed ID: 10433617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active chromatin hub of the mouse alpha-globin locus forms in a transcription factory of clustered housekeeping genes.
    Zhou GL; Xin L; Song W; Di LJ; Liu G; Wu XS; Liu DP; Liang CC
    Mol Cell Biol; 2006 Jul; 26(13):5096-105. PubMed ID: 16782894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An erythroid-specific chromatin opening element reorganizes beta-globin promoter chromatin structure and augments gene expression.
    Nemeth MJ; Bodine DM; Garrett LJ; Lowrey CH
    Blood Cells Mol Dis; 2001; 27(4):767-80. PubMed ID: 11778661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinctive signatures of histone methylation in transcribed coding and noncoding human beta-globin sequences.
    Kim A; Kiefer CM; Dean A
    Mol Cell Biol; 2007 Feb; 27(4):1271-9. PubMed ID: 17158930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.