BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 10882100)

  • 21. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine.
    Kenniston JA; Baker TA; Fernandez JM; Sauer RT
    Cell; 2003 Aug; 114(4):511-20. PubMed ID: 12941278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The interplay of ClpXP with the cell division machinery in Escherichia coli.
    Camberg JL; Hoskins JR; Wickner S
    J Bacteriol; 2011 Apr; 193(8):1911-8. PubMed ID: 21317324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease.
    Shin Y; Davis JH; Brau RR; Martin A; Kenniston JA; Baker TA; Sauer RT; Lang MJ
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19340-5. PubMed ID: 19892734
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of substrate gating and translocation into ClpP by channel residues and ClpX binding.
    Lee ME; Baker TA; Sauer RT
    J Mol Biol; 2010 Jun; 399(5):707-18. PubMed ID: 20416323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The RssB response regulator directly targets sigma(S) for degradation by ClpXP.
    Zhou Y; Gottesman S; Hoskins JR; Maurizi MR; Wickner S
    Genes Dev; 2001 Mar; 15(5):627-37. PubMed ID: 11238382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ClpX(P) generates mechanical force to unfold and translocate its protein substrates.
    Maillard RA; Chistol G; Sen M; Righini M; Tan J; Kaiser CM; Hodges C; Martin A; Bustamante C
    Cell; 2011 Apr; 145(3):459-69. PubMed ID: 21529717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytoplasmic degradation of ssrA-tagged proteins.
    Farrell CM; Grossman AD; Sauer RT
    Mol Microbiol; 2005 Sep; 57(6):1750-61. PubMed ID: 16135238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine.
    Burton RE; Siddiqui SM; Kim YI; Baker TA; Sauer RT
    EMBO J; 2001 Jun; 20(12):3092-100. PubMed ID: 11406586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags.
    Hersch GL; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12136-41. PubMed ID: 15297609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits.
    Levchenko I; Smith CK; Walsh NP; Sauer RT; Baker TA
    Cell; 1997 Dec; 91(7):939-47. PubMed ID: 9428517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding and degradation of heterodimeric substrates by ClpAP and ClpXP.
    Sharma S; Hoskins JR; Wickner S
    J Biol Chem; 2005 Feb; 280(7):5449-55. PubMed ID: 15591068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex.
    Burton BM; Baker TA
    Chem Biol; 2003 May; 10(5):463-72. PubMed ID: 12770828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems.
    Makovets S; Titheradge AJ; Murray NE
    Mol Microbiol; 1998 Apr; 28(1):25-35. PubMed ID: 9593294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular cloning and characterization of a mouse homolog of bacterial ClpX, a novel mammalian class II member of the Hsp100/Clp chaperone family.
    Santagata S; Bhattacharyya D; Wang FH; Singha N; Hodtsev A; Spanopoulou E
    J Biol Chem; 1999 Jun; 274(23):16311-9. PubMed ID: 10347188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins.
    Krüger E; Witt E; Ohlmeier S; Hanschke R; Hecker M
    J Bacteriol; 2000 Jun; 182(11):3259-65. PubMed ID: 10809708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2008 Feb; 29(4):441-50. PubMed ID: 18313382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multistep substrate binding and engagement by the AAA+ ClpXP protease.
    Saunders RA; Stinson BM; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28005-28013. PubMed ID: 33106413
    [No Abstract]   [Full Text] [Related]  

  • 38. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation.
    Amor AJ; Schmitz KR; Baker TA; Sauer RT
    Protein Sci; 2019 Apr; 28(4):756-765. PubMed ID: 30767302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic control of Dps protein levels by ClpXP and ClpAP proteases in Escherichia coli.
    Stephani K; Weichart D; Hengge R
    Mol Microbiol; 2003 Sep; 49(6):1605-14. PubMed ID: 12950924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The clpP multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus.
    Schelin J; Lindmark F; Clarke AK
    Microbiology (Reading); 2002 Jul; 148(Pt 7):2255-2265. PubMed ID: 12101312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.