These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 10882169)
1. Synthetic peptide mimics of a predicted topographical interaction surface: the cytochrome P450 2B1 recognition domain for NADPH-cytochrome P450 reductase. Omata Y; Dai R; Smith SV; Robinson RC; Friedman FK J Protein Chem; 2000 Jan; 19(1):23-32. PubMed ID: 10882169 [TBL] [Abstract][Full Text] [Related]
2. Mechanism-based inactivation of cytochrome P450 2B1 by 2-ethynylnaphthalene: identification of an active-site peptide. Roberts ES; Hopkins NE; Alworth WL; Hollenberg PF Chem Res Toxicol; 1993; 6(4):470-9. PubMed ID: 8374044 [TBL] [Abstract][Full Text] [Related]
3. Effect of 17-alpha-ethynylestradiol on activities of cytochrome P450 2B (P450 2B) enzymes: characterization of inactivation of P450s 2B1 and 2B6 and identification of metabolites. Kent UM; Mills DE; Rajnarayanan RV; Alworth WL; Hollenberg PF J Pharmacol Exp Ther; 2002 Feb; 300(2):549-58. PubMed ID: 11805216 [TBL] [Abstract][Full Text] [Related]
4. Effects of benzyl isothiocyanate on rat and human cytochromes P450: identification of metabolites formed by P450 2B1. Goosen TC; Mills DE; Hollenberg PF J Pharmacol Exp Ther; 2001 Jan; 296(1):198-206. PubMed ID: 11123381 [TBL] [Abstract][Full Text] [Related]
5. Effects of beta-ionone on the expression of cytochrome P450s and NADPH-cytochrome P450 reductase in Sprague Dawley rats. Jeong TC; Gu HK; Chun YJ; Yun CH; Han SS; Roh JK Chem Biol Interact; 1998 Jul; 114(1-2):97-107. PubMed ID: 9744558 [TBL] [Abstract][Full Text] [Related]
6. Role of lysine and arginine residues of cytochrome P450 in the interaction between cytochrome P4502B1 and NADPH-cytochrome P450 reductase. Shen S; Strobel HW Arch Biochem Biophys; 1993 Jul; 304(1):257-65. PubMed ID: 8323289 [TBL] [Abstract][Full Text] [Related]
7. Comparative study of monomeric reconstituted and membrane microsomal monooxygenase systems of the rabbit liver. I. Properties of NADPH-cytochrome P450 reductase and cytochrome P450 LM2 (2B4) monomers. Kanaeva IP; Dedinskii IR; Skotselyas ED; Krainev AG; Guleva IV; Sevryukova IF; Koen YM; Kuznetsova GP; Bachmanova GI; Archakov AI Arch Biochem Biophys; 1992 Nov; 298(2):395-402. PubMed ID: 1416970 [TBL] [Abstract][Full Text] [Related]
8. Mechanism-based inactivation of cytochromes P450 2B1 and P450 2B6 by 2-phenyl-2-(1-piperidinyl)propane. Chun J; Kent UM; Moss RM; Sayre LM; Hollenberg PF Drug Metab Dispos; 2000 Aug; 28(8):905-11. PubMed ID: 10901699 [TBL] [Abstract][Full Text] [Related]
9. Interaction between NADPH-cytochrome P-450 reductase and hepatic microsomes. Yang CS; Strickhart FS; Kicha LP Biochim Biophys Acta; 1978 May; 509(2):326-37. PubMed ID: 26401 [TBL] [Abstract][Full Text] [Related]
10. Identification of the heme adduct and an active site peptide modified during mechanism-based inactivation of rat liver cytochrome P450 2B1 by secobarbital. He K; Falick AM; Chen B; Nilsson F; Correia MA Chem Res Toxicol; 1996; 9(3):614-22. PubMed ID: 8728507 [TBL] [Abstract][Full Text] [Related]
11. Aryl acetylenes as mechanism-based inhibitors of cytochrome P450-dependent monooxygenase enzymes. Foroozesh M; Primrose G; Guo Z; Bell LC; Alworth WL; Guengerich FP Chem Res Toxicol; 1997 Jan; 10(1):91-102. PubMed ID: 9074808 [TBL] [Abstract][Full Text] [Related]
12. Changes in cytochrome P450 enzymes by 1,1-dichloroethylene in rat liver and kidney. Hanioka N; Jinno H; Nishimura T; Ando M Arch Toxicol; 1997; 72(1):9-16. PubMed ID: 9458185 [TBL] [Abstract][Full Text] [Related]
13. Blue light mediated photoreduction of the flavoprotein NADPH-cytochrome P450 reductase. A Förster-type energy transfer. Müller-Enoch D Z Naturforsch C J Biosci; 1997; 52(9-10):605-14. PubMed ID: 9373993 [TBL] [Abstract][Full Text] [Related]
14. Cytochromes P450 2B1 and P450 2B2 demethylate N-nitrosodimethylamine and N-nitrosomethylaniline in vitro. Stiborová M; Hansíková H; Frei E Gen Physiol Biophys; 1996 Jun; 15(3):211-23. PubMed ID: 9076504 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of monomeric reconstituted and membrane microsomal monooxygenase systems of the rabbit liver. II. Kinetic parameters of reductase and monooxygenase reactions. Kanaeva IP; Nikityuk OV; Davydov DR; Dedinskii IR; Koen YM; Kuznetsova GP; Skotselyas ED; Bachmanova GI; Archakov AI Arch Biochem Biophys; 1992 Nov; 298(2):403-12. PubMed ID: 1416971 [TBL] [Abstract][Full Text] [Related]
17. Denitrosation of the anti-cancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea catalyzed by microsomal glutathione S-transferase and cytochrome P450 monooxygenases. Weber GF; Waxman DJ Arch Biochem Biophys; 1993 Dec; 307(2):369-78. PubMed ID: 8274024 [TBL] [Abstract][Full Text] [Related]
18. [Effects of ethyl acetate extract of Semen Hoveniae on liver microsomal cytochrome P450 isoenzyme in rat]. Zhang H; Song J; Zhan XA; Tan Y Zhongguo Zhong Yao Za Zhi; 2007 Sep; 32(18):1917-21. PubMed ID: 18051907 [TBL] [Abstract][Full Text] [Related]
19. A novel class of cytochrome P450 reductase redox cyclers: cationic manganoporphyrins. Day BJ; Kariya C Toxicol Sci; 2005 May; 85(1):713-9. PubMed ID: 15703263 [TBL] [Abstract][Full Text] [Related]
20. Molecular modeling of cytochrome P450 2B1: mode of membrane insertion and substrate specificity. Dai R; Pincus MR; Friedman FK J Protein Chem; 1998 Feb; 17(2):121-9. PubMed ID: 9535274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]