BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 10882712)

  • 21. Interstrand crosslink repair: can XPF-ERCC1 be let off the hook?
    Bergstralh DT; Sekelsky J
    Trends Genet; 2008 Feb; 24(2):70-6. PubMed ID: 18192062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. hMutSbeta is required for the recognition and uncoupling of psoralen interstrand cross-links in vitro.
    Zhang N; Lu X; Zhang X; Peterson CA; Legerski RJ
    Mol Cell Biol; 2002 Apr; 22(7):2388-97. PubMed ID: 11884621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. XPF knockout via CRISPR/Cas9 reveals that ERCC1 is retained in the cytoplasm without its heterodimer partner XPF.
    Lehmann J; Seebode C; Smolorz S; Schubert S; Emmert S
    Cell Mol Life Sci; 2017 Jun; 74(11):2081-2094. PubMed ID: 28130555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The importance of the ERCC1/ERCC4[XPF] complex for hypoxic-cell radioresistance does not appear to derive from its participation in the nucleotide excision repair pathway.
    Murray D; Rosenberg E
    Mutat Res; 1996 Dec; 364(3):217-26. PubMed ID: 8960133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fanconi anemia, complementation group A, cells are defective in ability to produce incisions at sites of psoralen interstrand cross-links.
    Kumaresan KR; Lambert MW
    Carcinogenesis; 2000 Apr; 21(4):741-51. PubMed ID: 10753211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Fanconi anemia protein, FANCG, binds to the ERCC1-XPF endonuclease via its tetratricopeptide repeats and the central domain of ERCC1.
    Wang C; Lambert MW
    Biochemistry; 2010 Jul; 49(26):5560-9. PubMed ID: 20518486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks.
    Abdullah UB; McGouran JF; Brolih S; Ptchelkine D; El-Sagheer AH; Brown T; McHugh PJ
    EMBO J; 2017 Jul; 36(14):2047-2060. PubMed ID: 28607004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification and characterization of the XPF-ERCC1 complex of human DNA repair excision nuclease.
    Park CH; Bessho T; Matsunaga T; Sancar A
    J Biol Chem; 1995 Sep; 270(39):22657-60. PubMed ID: 7559382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential processing of UV mimetic and interstrand crosslink damage by XPF cell extracts.
    Zhang N; Zhang X; Peterson C; Li L; Legerski R
    Nucleic Acids Res; 2000 Dec; 28(23):4800-4. PubMed ID: 11095693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA interstrand crosslinks induce a potent replication block followed by formation and repair of double strand breaks in intact mammalian cells.
    Vare D; Groth P; Carlsson R; Johansson F; Erixon K; Jenssen D
    DNA Repair (Amst); 2012 Dec; 11(12):976-85. PubMed ID: 23099010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple DNA binding domains mediate the function of the ERCC1-XPF protein in nucleotide excision repair.
    Su Y; Orelli B; Madireddy A; Niedernhofer LJ; Schärer OD
    J Biol Chem; 2012 Jun; 287(26):21846-55. PubMed ID: 22547097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physical and functional interaction between the XPF/ERCC1 endonuclease and hRad52.
    Motycka TA; Bessho T; Post SM; Sung P; Tomkinson AE
    J Biol Chem; 2004 Apr; 279(14):13634-9. PubMed ID: 14734547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1.
    Tsodikov OV; Enzlin JH; Schärer OD; Ellenberger T
    Proc Natl Acad Sci U S A; 2005 Aug; 102(32):11236-41. PubMed ID: 16076955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple roles of ERCC1-XPF in mammalian interstrand crosslink repair.
    Rahn JJ; Adair GM; Nairn RS
    Environ Mol Mutagen; 2010 Jul; 51(6):567-81. PubMed ID: 20658648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repair of laser-localized DNA interstrand cross-links in G1 phase mammalian cells.
    Muniandy PA; Thapa D; Thazhathveetil AK; Liu ST; Seidman MM
    J Biol Chem; 2009 Oct; 284(41):27908-27917. PubMed ID: 19684342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of reactive oxygen species-induced 3'-blocked ends by XPF-ERCC1.
    Fisher LA; Samson L; Bessho T
    Chem Res Toxicol; 2011 Nov; 24(11):1876-81. PubMed ID: 22007867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human SNM1A and XPF-ERCC1 collaborate to initiate DNA interstrand cross-link repair.
    Wang AT; Sengerová B; Cattell E; Inagawa T; Hartley JM; Kiakos K; Burgess-Brown NA; Swift LP; Enzlin JH; Schofield CJ; Gileadi O; Hartley JA; McHugh PJ
    Genes Dev; 2011 Sep; 25(17):1859-70. PubMed ID: 21896658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth retardation, early death, and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF.
    Tian M; Shinkura R; Shinkura N; Alt FW
    Mol Cell Biol; 2004 Feb; 24(3):1200-5. PubMed ID: 14729965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of nucleotide excision repair in a recombination-independent and error-prone pathway of DNA interstrand cross-link repair.
    Wang X; Peterson CA; Zheng H; Nairn RS; Legerski RJ; Li L
    Mol Cell Biol; 2001 Feb; 21(3):713-20. PubMed ID: 11154259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The formation of UV-induced chromosome aberrations involves ERCC1 and XPF but not other nucleotide excision repair genes.
    Chipchase MD; Melton DW
    DNA Repair (Amst); 2002 Apr; 1(4):335-40. PubMed ID: 12509251
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.