BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 10882792)

  • 1. Patterns of regional brain activation associated with different forms of motor learning.
    Ghilardi M; Ghez C; Dhawan V; Moeller J; Mentis M; Nakamura T; Antonini A; Eidelberg D
    Brain Res; 2000 Jul; 871(1):127-45. PubMed ID: 10882792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice.
    van Mier H; Tempel LW; Perlmutter JS; Raichle ME; Petersen SE
    J Neurophysiol; 1998 Oct; 80(4):2177-99. PubMed ID: 9772270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visuomotor transformations for reaching to memorized targets: a PET study.
    Lacquaniti F; Perani D; Guigon E; Bettinardi V; Carrozzo M; Grassi F; Rossetti Y; Fazio F
    Neuroimage; 1997 Feb; 5(2):129-46. PubMed ID: 9345543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study.
    Honda M; Deiber MP; Ibáñez V; Pascual-Leone A; Zhuang P; Hallett M
    Brain; 1998 Nov; 121 ( Pt 11)():2159-73. PubMed ID: 9827775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical areas with enhanced activation during object-centred spatial information processing. A PET study.
    Honda M; Wise SP; Weeks RA; Deiber MP; Hallett M
    Brain; 1998 Nov; 121 ( Pt 11)():2145-58. PubMed ID: 9827774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory control of competing motor memories.
    Shadmehr R; Holcomb HH
    Exp Brain Res; 1999 May; 126(2):235-51. PubMed ID: 10369146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frontal and parietal networks for conditional motor learning: a positron emission tomography study.
    Deiber MP; Wise SP; Honda M; Catalan MJ; Grafman J; Hallett M
    J Neurophysiol; 1997 Aug; 78(2):977-91. PubMed ID: 9307128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET.
    Boecker H; Dagher A; Ceballos-Baumann AO; Passingham RE; Samuel M; Friston KJ; Poline J; Dettmers C; Conrad B; Brooks DJ
    J Neurophysiol; 1998 Feb; 79(2):1070-80. PubMed ID: 9463462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional networks in motor sequence learning: abnormal topographies in Parkinson's disease.
    Nakamura T; Ghilardi MF; Mentis M; Dhawan V; Fukuda M; Hacking A; Moeller JR; Ghez C; Eidelberg D
    Hum Brain Mapp; 2001 Jan; 12(1):42-60. PubMed ID: 11198104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET.
    Grafton ST; Mazziotta JC; Presty S; Friston KJ; Frackowiak RS; Phelps ME
    J Neurosci; 1992 Jul; 12(7):2542-8. PubMed ID: 1613546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor subcircuits mediating the control of movement velocity: a PET study.
    Turner RS; Grafton ST; Votaw JR; Delong MR; Hoffman JM
    J Neurophysiol; 1998 Oct; 80(4):2162-76. PubMed ID: 9772269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PET study of pointing with visual feedback of moving hands.
    Inoue K; Kawashima R; Satoh K; Kinomura S; Goto R; Koyama M; Sugiura M; Ito M; Fukuda H
    J Neurophysiol; 1998 Jan; 79(1):117-25. PubMed ID: 9425182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral structures participating in motor preparation in humans: a positron emission tomography study.
    Deiber MP; Ibañez V; Sadato N; Hallett M
    J Neurophysiol; 1996 Jan; 75(1):233-47. PubMed ID: 8822554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A functional MRI study of motor dysfunction in Friedreich's ataxia.
    Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF
    Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.
    Gooijers J; Beets IA; Albouy G; Beeckmans K; Michiels K; Sunaert S; Swinnen SP
    Brain; 2016 Sep; 139(Pt 9):2469-85. PubMed ID: 27435093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the network for planning: a correlational PET activation study with the Tower of London task.
    Dagher A; Owen AM; Boecker H; Brooks DJ
    Brain; 1999 Oct; 122 ( Pt 10)():1973-87. PubMed ID: 10506098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual feedback about time estimation is related to a right hemisphere activation measured by PET.
    Brunia CH; de Jong BM; van den Berg-Lenssen MM; Paans AM
    Exp Brain Res; 2000 Feb; 130(3):328-37. PubMed ID: 10706432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.